
ISYE 8813: Algorithmic Foundations of Ethical ML Fall 2021

Lecture 5: The Exponential Mechanism & Properties of DP
Lecturer: Juba Ziani

In the previous lecture, we saw how we could answer numerical queries. We saw i) how
to use the randomized response mechanism to release sensitive binary data in a DP manner,
then ii) how to answer numerical queries with values in R in a DP fashion. However,
sometimes, we may wish to answer a non-numerical query: for example, ”what is the most
common disease in this database?” or ”what hypothesis has the lowest error on the current
dataset?”

Here, the output to each of these queries is not necessarily a numerical value; rather,
it is one of the possible options in a discrete set, that could in principle contain arbitrary
elements. Now, the problem we are looking at of privately selecting (close to) the best
possible option in that discrete set is called “differentially private selection”.

Example 1. Suppose I have an item for sale, and k bidders. Each bidder i reports a bid bi
for the item, and a bidder is willing to buy the item if and only if his bid is above the item
price (think of the bid as the maximum amount the bidder is willing to pay for the item).
How do we pick the best possible price to sell the item at (imagine here the price is taken
from a discrete set P), i.e. how to find

p∗ = arg max
p∈P

max
i∈[k]

p · 1 [bi ≥ p] .

while preserving the privacy of each bidder’s bid? Here note that we are not just answering
a numerical query, we are optimizing over set P.

This problem can be written more generally as follows. As before, imagine we have a
database x ∈ N|X |, and a range of possible outcomes R. Now, suppose we have a utility
function u : N|X | ×R → R which takes as an input (x, r) for a database x and an outcome
r, and outputs a score or utility u(x, r) that represents the quality of outcome r on database
x. How do we solve

r∗ = arg max
r∈R

u(x, r),

(i.e. find the outcome r that “best” explains data x) while still protecting privacy with
respect to database x?

Example 2 (Example 1, continued). In the above example, the database b = (b1, . . . , bk)
corresponds to the collection of the k bidders’ bids; this is the data we are trying to protect.
The range of possible outcomes is P (the set of prices), and each possible outcome is a price
p ∈ P. The utility function is

u(b, p) = max
i∈[k]

p · 1 [bi ≥ p] ,

1

which is the revenue I get from selecting price p when the bids are given by b. Now, we aim
to solve

p∗ = arg max
p∈P

u(b, p)

in a differentially-private manner.

Note that once again, there will be a privacy - accuracy trade-off. To guarantee privacy,
we cannot output r∗ with probability 1. However, what we can do is to have a probability
distribution over which r we output, and guarantee that with high probability, this r does
“well”. I.e., u(x, r) is as close as possible to u(x, r∗) = maxr u(x, r). To do so, we can use
what is called the “Exponential Mechanism”.

1 The Exponential Mechanism

Definition of the exponential mechanism The main idea behind the exponential mech-
anism is to output a specific r ∈ R with a probability that depends on the value of u(x, r),
i.e. Pr [M(x) = r] = h(u(x, r), ε) for some function h and the desired privacy level ε. The
higher u(x, r) is, the better r is given database x, and the higher the probability we output
it. The exponential mechanism basically aims to carefully design h.

As we have seen in the previous lecture, differential privacy relies on the notion of sensi-
tivity of a query: queries that are more sensitive to and depend more on a single individual’s
private data naturally require more noise to be added to obtain the same amount of privacy.
We first extend the notion of sensitivity to utility functions with two arguments:

Definition 3.
∆u , max

r∈R
max

x,y neighbors
|u(x, r)− u(y, r)|.

As before, the sensitivity of a function aims to compare how much the relevant function
changes when changing a single entry in a database. As before, we take the worst case over
neighboring databases x and y; however, the main difference here is that we also take the
worst case over the second argument, r ∈ R. Note that however the range argument r is
held fixed across u(x, r) and u(y, r): we are not comparing how much changing the range
changes the utility function/the utility function can be arbitrarily sensitive in r. We can
now formally define the exponential mechanism:

Definition 4 (Exponential Mechanism). The exponential mechanism ME(x, u,R) selects

and outputs and element r ∈ R with probability proportional to exp
(

exp(εu(x,r))
2∆u

)
.

Properties of the exponential mechanism We now look at the privacy and accuracy
properties of the exponential mechanism:

Theorem 5. The exponential mechanism is (ε, 0)-differentially private.

2

Proof. Note here that we do not need to assume the range R of the exponential mechanism
is finite to argue privacy. Let x and y be two neighboring databases, we have that

Pr [ME(x, u,R) = r]

Pr [ME(y, u,R) = r]
=

exp(εu(x,r)
2∆u)∑

r′∈R exp
(

εu(x,r′)
2∆u

)
exp(εu(y,r)

2∆u)∑
r′∈R exp

(
εu(y,r′)

2∆u

)

= exp

(
ε(u(x, r)− u(y, r))

2∆u

)
·

∑
r′∈R exp

(
εu(x,r′)

2∆u

)
∑

r′∈R exp
(

εu(y,r′)
2∆u

) .
Now, we note that the first term is upper-bounded by exp(ε/2), since |u(x, r′)− u(y, r′)| ≤
∆u. Let us now examine the second term. Note that this term is not equal to 1, as the
renormalization factors on x and y are different! Nevertheless,∑

r′∈R exp
(

εu(x,r′)
2∆u

)
∑

r′∈R exp
(

εu(y,r′)
2∆u

) =

∑
r′∈R exp

(
ε(u(x,r′)−u(y,r′)) + εu(y,r′)

2∆u

)
∑

r′∈R exp
(

εu(y,r′)
2∆u

)
≤

∑
r′∈R exp

(
ε
2

+ εu(y,r′)
2∆u

)
∑

r′∈R exp
(

εu(y,r′)
2∆u

)
= exp(ε/2) ·

∑
r′∈R exp

(
εu(y,r′)

2∆u

)
∑

r′∈R exp
(

εu(y,r′)
2∆u

)
= exp(ε/2).

This concludes the proof.

We now study the accuracy (here, utility) guarantees of the exponential mechanism.
Before doing so, we note that we anticipate this mechanism to give strong utility guarantees,
as it discounts outcomes exponentially quickly as their quality degrades. In turn, we expect
the r picked by the mechanism to have a high score u(x, r). Formally:

Theorem 6. Let us fix a database x, and let ROPT = {r ∈ R : u(x, r) = maxr′ u(x, r′)}
be the set of elements in R that achieve the maximum possible utility score. Then, the
exponential mechanism guarantees

Pr

[
ME(x, u,R) ≤ OPTu(x)− 2∆u

ε

(
ln

(
|R|
|ROPT|

)
+ t

)]
≤ exp(−t),

where OPTu(x) = maxr u(x, r).

Before going through the proof of this theorem, we note the following simple corollary,
that directly follows from |ROPT| ≥ 1:

3

Corollary 7.

Pr

[
ME(x, u,R) ≤ OPTu(x)− 2∆u

ε
(ln (|R|) + t)

]
≤ exp(−t).

Proof of Theorem 6. Take any c ∈ R. We note that

Pr [u(x,ME(x, u,R)) ≤ c] =

∑
r: u(x,r)≤c exp (εu(x, r)/2∆u)∑

r∈R exp(εu(x, r)/2∆u)

≤
∑

r: u(x,r)≤c exp (εc/2∆u)∑
r∈ROPT

exp(εOPTu(x)/2∆u)

=
|R| exp(εc/2∆u)

|ROPT| exp(εOPTu(x)/2∆u)

=
|R|
|ROPT|

exp

(
ε(c−OPTu(x))

2∆u

)
.

We obtain the theorem by picking

c , OPTu(x)− 2∆u

ε

(
ln

(
|R|
|ROPT|

)
+ t

)
.

2 Properties of Differential Privacy

We have so far seen three mechanisms for achieving differential privacy (Laplace Mechanism,
Exponential Mechanism, and Randomized Response). We would like to be able to use these
mechanisms as building blocks for more complicated mechanisms and more advanced data
analysis.

We will now see some properties of DP that allow us to put these mechanisms together
and maintain their privacy guarantees.

Post-processing and robustness to adversarial attacks

Theorem 8 (Post-processing, Prop. 2.1 in [1]). Let M : N|X| → R be (ε, δ)-differentially
private, and let f : R → R′ be an arbitrary randomized function. Then, f ◦M : N|X| → R′
is (ε, δ)-differentially private.

Proof. LetM : N|X | → R be (ε, δ)-differentially private, and let f : R → R′ be an arbitrary
deterministic function. Let x and y be neighboring databases, let S ′ ⊆ R′, and let S ⊆ R
be the pre-image of S from f .

Pr[f ◦M(x) ∈ S ′] = Pr[M(x) ∈ S]

≤ eε Pr[M(y) ∈ S]

= Pr[f ◦M(x) ∈ S ′]

4

Now consider a randomized f : R → R′. Any randomized function can be seen as a
convex combination of deterministic functions (where the weights correspond to the proba-
bility of picking a specific deterministic function). Formally, there must exist deterministic
f1, . . . , fk : R → R′ and α1, . . . , αk ∈ R such that f = fi with probability αi. Then, we
have, for S ′ ⊆ R′:

Pr[f ◦M(x) ∈ S ′] =
k∑

i=1

αi Pr[fi ◦M(x) ∈ S ′]

≤
k∑

i=1

αi (eε Pr[fi ◦M(y) ∈ S ′])

= eε Pr[f ◦M(y) ∈ S ′]

This post-processing guarantee is one of the most important properties of differential
privacy. Effectively, it promises that DP does not just provide an ad-hoc privacy guarantee;
rather, it is robust to any attack or computation that an adversary may run on the outcome
of the mechanism. For any such attack, the DP guarantee still holds and no additional
information is learned. Notice that there is no assumption on the computational power of
the adversary or on the auxiliary information held by the adversary.

Composition: how to keep track of your privacy budget Another extremely useful
property of DP is composition, meaning that the algorithms compose and their privacy
guarantees degrade gracefully as multiple computations are performed on the same dataset.
This means if you want to build a complicated algorithm, you can combine several simple
DP algorithms, and then reason about the overall privacy guarantee by simply adding up
the privacy guarantees of each of the building blocks.

Theorem 9 (Basic Composition, Thm 3.14 and Cor 3.15 in [1]). Let Mi : N|X| → Ri be
(εi, δi)-differentially private for i = 1, . . . , k. Then the composition M[k] : N|X| → R1×· · ·×
Rk, defined as:

M[k](x) = (M1(x),M2(x), . . . ,Mk(x)),

is (
∑k

i=1 εi,
∑k

i=1 δi)-differentially private.

Proof of simpler version with δ = 0, see Appendix B of [1] for proof with δ > 0. LetMi : N|X | →
Ri be (ε, 0)-differentially private for i = 1, . . . , k. Consider the composition M[k](x) =
(M1(x), . . . ,Mk(x)). Let x and y be neighboring databases, and let S = (s1, . . . , sk) ∈

5

R1 × · · · × Rk.

Pr[M[k](x) = S] =
k∏

i=1

Pr[Mi(x) = si]

≤
k∏

i=1

eε Pr[Mi(y) = si]

= eε
k∏

i=1

Pr[Mi(y) = si]

= eε Pr[M[k](y) = S]

Now let’s think about the case where I want an overall privacy guarantee of ε-DP. Think
of ε as my privacy budget, and I’m going to deplete my budget a little bit every time I run
some mechanism. If I know I’m going to run k mechanisms, I can set each mechanism to be
ε/k-DP.

Group privacy: beyond individual-level privacy guarantees In terms of practicality,
differential privacy is phrased in terms of a single individual, but in practice we may want
privacy for groups. For example, families whose data are correlated or identical. Or maybe
you personally have multiple entries in the database (e.g., hospital records, if you have visited
the hospital more than once).

Theorem 10 (Group Privacy). Let M : N|X| → R be (ε, δ)-differentially private. Then M
is also (kε, ke(k−1)εδ)-differentially private for groups of size k. That is, for all x, y ∈ N|X|
such that ‖x− y‖1 ≤ k and for all S ⊆ R,

Pr[M(x) ∈ S] ≤ ekε Pr[M(y) ∈ S] + ke(k−1)εδ.

Proof of simpler version with δ = 0, as in Thm 2.2 in [1]. Let x and y be any two databases
such that ‖x − y‖1 ≤ k. Then there must exist a sequence of databases D0, . . . , Dk such
that x = D0, y = Dk and ‖Di −Di−1‖1 ≤ 1 ∀i ∈ [k]. (Think of each intermediate database
corresponding to either the removal of an element that appears in x but not in y, or the
addition of an element that appears in y but not in x. We need at most k such modifications
to go from x to y.)

Let M be an ε-differentially private mechanism; this means that for any S ⊆ R and for
all i ∈ [k],

Pr[M(Di−1) ∈ S] ≤ eε Pr[M(Di) ∈ S].

By induction, we get that Pr[M(D0) ∈ S] ≤ (eε)k Pr[M(Dk) ∈ S], i.e.,

Pr[M(x) ∈ S] ≤ ekε Pr[M(y) ∈ S], ∀S ⊆ Range(M), ∀(x, y) such that ‖x− y‖1 ≤ k.

6

Group privacy says that the level of privacy degrades linearly with the size k of the
group to be protected. When the size of the group becomes large (for example, of the
order of O(n)), this privacy guarantee becomes trivial. This is to be expected: providing
DP to a significant fraction of the database means that we are trying to hide the data of
the whole population, and prevent learning statistics about said population; this is in direct
conflict with our objective of hiding individual-level attributes while learning population-level
properties. Generally, we want to think of k as defining a small subset of the population.

References

[1] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9(3-4):211–407, 2014.

7

	The Exponential Mechanism
	Properties of Differential Privacy

