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Lecture 6: Approx DP: Gaussian Mech and Advanced Comp
Lecturer: Juba Ziani

In previous lectures, we have seen that ε-differential privacy can be relaxed to an approx-
imate, (ε, δ) version, where we need to guarantee

Pr [M(x) ∈ S] ≤ exp(ε) Pr [M(y) ∈ S] + δ

on any two neighboring databases x and y and on any outcome set S ⊂ R. However, all
the mechanisms we have studied so far apply to (ε, 0)-differential privacy, and do not take
advantage of the flexibility given by the additive parameter δ. In this lecture, we start by
studying a mechanism that is not (ε, 0)-DP, but that is (ε, δ)-DP: the Gaussian mechanism.

1 The Gaussian Mechanism

As the name suggest, the Gaussian mechanism privatizes a statistic by adding Gaussian
noise. However, the Gaussian mechanism requires a slightly different notion of sensitivity
than the one that we have use for the multi-dimensional Laplace mechanism.

Definition 1 (`2-sensitivity). The `2-sensitivity of a function f : NX → Rd is given by

∆2f , max
x,y neighbors

‖f(x)− f(y)‖2 =

√√√√ d∑
i=1

(fi(x)− fi(y))2.

In the Laplace mechanism, we were adding noise according to the `1-sensitivity of our
function, i.e. using the `1-norm. Note that those two norms are related: we know that for
any vector z ∈ Rd, we have

‖z‖2 ≤ ‖z‖1 ≤
√
d‖z‖2.

We now remind the reader of the definition of the Gaussian distribution:

Definition 2. The Gaussian distribution N(µ, σ2) with mean µ and variance σ2 has the
following density:

f(x) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

The Gaussian mechanism then simply adds well-chosen Gaussian noise to each coordinate
of our vector-valued query f(X). Formally,

Definition 3 (The Gaussian Mechanism). Let f : N|X | → Rd. The Gaussian mechanism is
then defined as

MG(x) = f(X) + (Y1, . . . , Yd),

where the Yi’s are drawn independently from N(0, 2 ln(1.25/δ) · (∆2f)2 /ε2).
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Figure 1: Gaussian pdf for different values of µ, σ

The Gaussian mechanism is not ε-differentially private for any ε > 0, no matter how you
pick σ. This will be left as an exercise in the second problem set. However,

Theorem 4. The Gaussian mechanism as described above is (ε, δ)-differentially private.

Proof. We provide a partial proof of the result here. For a more careful and complete proof,
please refer to Appendix A of [1].

Our goal is as usual to bound the following quantity across two neighboring databases
x, y:

Pr [M(x) = s]

Pr [M(y) = s]
,

where here both M in s live in Rd and are d-dimensional vectors. Since the probability
we will be working on are exponential, we can instead just work with the following random
variable and aim to bound it by ε with probability at least 1− δ, for Z ∼ N(0, 2 ln(1.25/δ)
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As per the first problem set, this is sufficient to argue (ε, δ)-differential privacy:

ln

(
Pr [M(x) = f(x) + Z]

Pr [M(y) = f(x) + Z]

)
= ln

(
exp (−‖Z‖2

2/2σ
2)

exp (−‖f(y)− f(x) + Z)‖2
2/2σ

2)

)
(1)

=
1

2σ2

(
−‖Z‖2

2 + ‖Z + v‖2
2

)
(2)

=
1

2σ2

(
−‖Z‖2

2 + ‖Z‖2
2 + ‖v‖2 + 2Z>v

)
(3)

=
1

2σ2

(
‖v‖2 + 2Z>v

)
(4)

where v , f(x) − f(y). Let us focus on the 1D-case; there, we see that in absolute value,
the above quantity is upper bounded by∣∣∣∣ 1

2σ2

(
‖v‖2 + 2Z>v

)∣∣∣∣ ≤ 1

2σ2

(
v2 + 2|v||Z|

)
≤ 1

2σ2

(
∆f 2 + 2∆f |Z|

)
.

So first, we note that this is always less than ε under the condition that

|Z| ≤ σ2ε/∆f −∆f/2.

It only remains to show that |Z| > σ2ε/∆f −∆f/2 with probability at most δ. Let us give
some intuition on how to do this in the 1-dimensional case. By the traditional tail bounds
of a Gaussian distribution, we have

Pr [|Z| > t] ≤
√

2σ√
π

exp(−t2/2σ2).

We want δ ,
√

2σ√
π

exp(−t2/2σ2), which can be rewritten (handwaving-ly)

t ∼ σ
√

ln (σ/δ).

With σ ∼ ∆f
ε

√
ln(1/δ), we get t ∼ ∆f

ε
ln (1/δ). This roughly matches the desired lower

bound on |Z|, which is, if we ignore the ∆f/2 term,

σ2ε

∆f
∼ ∆f

ε
ln(1/δ).

(Here note that it makes sense to “ignore” the ∆f/2 at a high level, as it is much smaller
than ∆f/ε for small ε. To do this rigorously, we need to take the small terms that I ignored
into account: t will contain a term that depends on ln ∆f/ε, which will lead to a slighty
higher bound on |Z| than what we desire; we will use the ∆f

2
term to counteract its effect.)
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Now, it is easy to see that that d-dimensional case reduces to the 1-D case. In particular,
in the 1-D case, the term we are trying to bound is

1

2σ2

(
v2 + 2vZ

)
,

which just follows a gaussian distribution with mean v2

2σ2 and variance 4v2

4σ4σ
2 , v2

σ2 (follows
from the fact that a + bZ is still Gaussian, and E[Z] = a + bE[Z] = a, and V ar[Z] =
b2 · V ar[Z].) Now, in the multivariate case, we are interested instead in

1

2σ2

(
‖v‖2 + 2Z>v

)
.

But note that Z>v =
∑

i viZi is a weighted sum of independent Gaussian random variables,
so is Gaussian itself. In particular, it has mean 0 and variance

4
d∑
i=1

v2
i = ‖v‖2.

So, we can rewrite Z>v as ‖v‖Z ′ where Z ′ ∼ N(0, 1), and we now just need to bound∣∣∣∣ 1

2σ2

(
‖v‖2 + 2‖v‖2Z

′)∣∣∣∣ ≤ 1

2σ2

(
∆f 2 + 2∆f |Z ′|

)
.

This is exactly the 1-D case.

2 Advanced Composition

Let ∆f be the sensitivity of query f , and let g = (f, . . . , f). We have that the `2-sensitivity
of g is given by

∆g = max
x,y neighbors

√√√√ d∑
i=1

|f(x)− f(y)|2 = max
x,y neighbors

√
d · |f(x)− f(y)| ≤

√
d ·∆f.

Now let us run the Gaussian mechanism on (f(x), . . . , f(x)). To do so, we output (f(x)+

Z1, . . . , f(x) +Zd) where Zi ∼ N(0, ln(1/δ) · (∆g)2

ε2
= d ln(1/δ) · (∆f)2

ε2
). Equivalently, one can

see this as running the exponential mechanism d times, with parameter ε′ = ε/
√
d: we then

get that we have to pick

σ′ ∼ ln(1/δ)
(∆f)2

ε′ 2
= d ln(1/δ)

(∆f)2

ε2

to obtain (ε, δ)-DP, as above. This, by the way, is exactly the composition of d Gaussian
mechanisms with parameter ε′.
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But now one may notice that if I were to apply the basic composition theorem, I would
have that the composition of d Gaussian mechanisms with a ε′ privacy parameter would have
a privacy parameter of dε′ =

√
dε. I.e., the basic composition theorem gives us a guarantee

that is
√
d worse than what we actually obtained!

This suggests that in the case of (ε, δ)-DP, the basic composition theorem may not be
tight, and could have a dependency in

√
dε instead of ε when composing d queries. This

exactly what is shown by the advanced composition theorem.

Theorem 5 (Advanced Composition). For all ε, δ, δ′ ≥ 0, the class of (ε, δ)-differentially
private mechanisms satisfies (ε′, kδ + δ′)-differential privacy under k-fold adaptive composi-
tion for

ε′ =
√

2k ln(1/δ′)ε+ kε (exp(ε)− 1) .

Proof. This is beyond the scope of the class. If interested, see [1].

Hence, this ability to shave off a factor of
√
d in the privacy parameter is not a property

of only the Gaussian mechanism; it is in fact a property of (ε, δ)-differential privacy!
A few notes about the definition:

• This theorem holds for adaptive composition. For a formal exposition, see [1] on page
49. But the idea is that you can pick the the mechanism you use in step j adaptively,
i.e. as a function of the outputs of the previous mechanisms M1 to Mj−1!

• Think of δ′ as a parameter you get to choose. Different δ′ lead to different guarantees:
the smaller the δ′, the better the second parameter in the composition theorem, but
the first argument increases (however, it only increases at a very slow rate of ln(1/δ′),
which is almost effectively constant. So, you can think of δ′ as very small, and the
dependency being roughly kδ as in basic composition.

• The dependency on the first argument is better than before. For ε small, we have
roughly that exp(ε)− 1 ∼ ε, and so our guarantee becomes

ε′ ∼
√
kε+ kε2.

The first term is better than the kε from the basic composition theorem by a factor of√
k. The second term is better by a factor of ε (remember we think of ε small, often

much smaller than 1).

• Imagine I want a mechanism that is (ε, kδ + δ′)-DP for some δ by composing k mech-

anisms. Then I just need each mechanism to be

(
ε

2
√

2k ln(1/δ′)
, δ

)
-DP. Indeed, we have

that for small ε ≤ 1 (in which case exp(ε) − 1 ≤ 2ε), the privacy parameter after
composition is upper bounded by√

2k ln(1/δ′) · ε

2
√

2k ln(1/δ′)
+ 2k

ε

8k ln(1/δ′)
≤ ε

2
+

ε

4 ln(1/δ′)
.
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For δ′ not too big (remember we want it to be very small), we have ln(1/δ′) ≥ 1/2 and
the above bound is at most ε. That matches roughly what we saw earlier with the
exponential mechanism, where we can use ε/

√
k instead of the ε/k for the naive/basic

composition theorem.
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