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So far, in this class, we have seen how to answer different types of queries in a differentially
private manner, under different notions of differential privacy. First, we have seen how to
answer simple numerical queries, though the Laplace mechanism. Then, we have seen how
to answer more complex, optimization queries (what is the hypothesis that maximizes some
utility or minimizes some loss function) in a ε-DP manner. We also saw how to satisfy a
slightly less stringent notion of privacy, through the Gaussian mechanism, which provides
privacy with high probability but still leaves a very small probability δ that the privacy
guarantees do not hold. Finally, we started seeing some of the essential building blocks to
compose private mechanisms together, and to perform operations on the outcomes of such
mechanism.

But what happens when we want to be able not to answer queries? What if we need to
answer many queries in row, but we want to preserve our privacy budget? In cases in which
we only care if the value of a query is important enough/above a certain threshold, and we
have good reason to believe there are few queries that are above this threshold (so, we are
in a sparse case), we may want not to answer every query that comes our way. rather, we
want to select in a differentially private way which of these queries we are going to answer.
That way, by answering only a small subset of the queries, we can try to preserve our privacy
budget as much as possible.

Example 1. In a machine learning setting, we may want to test a large number of features
and try to understand their correlation with the labels. We may want to identify which
features matter a lot, i.e. have at least a certain level of correlation with the label, so that
we can limit our model to only take these “good” features into account.

Another interesting application of this technique is for generalization in adaptive data
analysis: one can use such a technique to detect, in a privacy-preserving manner, whether
we are over-fitting to the data/not properly generalizing; when answering a large number of
adaptive queries, we want to make sure that we do not overfit too often, otherwise the answer
to our adaptively-chosen queries on the dataset may get further and further away from the
truth. (If interested in this, note that this is one of the topics that you can read and write
about later in this class).

This is what the Sparse Vector technique is going to help us with here. The mechanism
works by taking in a long stream of queries, adding Laplace noise to each answer, comparing
each (noisy) answer against a noisy (Laplace) threshold, and only outputting the answer to
those queries with values above the threshold.
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1 A building block for SparseVector: AboveThreshold

We first start with a simplified version of the mechanism: see Algorithm 1. AboveNoisyThresh-
old is a mechanism that keeps running queries until it detects that a query is above the desired
threshold, then halts.

Algorithm 1: AboveNoisyThreshold(x, {fi}, T, ε)
Input: database x, adaptively chosen stream of sensitivity-1 queries {fi}, threshold
T , privacy parameter ε

Output: Stream of answers {ai} ∈ {⊥,>}∗
Let T̂ = T + Lap(2

ε
)

for each query fi do

Let vi = Lap(4
ε
) if fi(x) + vi ≥ T̂ then

output ai = > Halt
else

output ai = ⊥
end

end

Theorem 2. AboveNoisyThreshold is (ε, 0)-differentially private.

Proof. See [1], p57-58. Slightly cleaner proof here:
http://www.gautamkamath.com/CS860notes/lec9.pdf.

We also want to make sure that we are identifying the right query for this mechanism,
that is above the desired threshold with high probability. For that, we need an accuracy
guarantee. Note that we can’t use our previous accuracy notions which say the answers
provided by the mechanism are close to the true answers because AboveNoisyThreshold does
not produce numeric answers. In turn, we need the new, following definition of accuracy:

Definition 3 (Accuracy). A mechanism that outputs a stream of answers {ai} ∈ {⊥,>}∗ to
a stream of k queries {fi} is (α, β)-accurate with respect to a threshold T if, with probability
at least 1− β, the mechanism does not halt before fk, and

∀ai = > : fi(x) ≥ T − α
∀ai = ⊥ : fi(x) ≤ T + α

This definition requires that with high probability, the mechanism produces an approxi-
mately correct output for all k queries.

Theorem 4. For any sequence of k sensitivity-1 queries f1, . . . , fk s.t. |{i < k : fi(x) ≥
T − α}| = 0, then AboveNoisyThreshold is (α, β)-accurate for any β > 0 and

α =
8(ln(k) + ln( 2

β
))

ε
.
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Proof. See [1], p59. Slightly cleaner proof here:
http://www.gautamkamath.com/CS860notes/lec9.pdf.

Note that this quantifier |{i < k : fi(x) ≥ T − α}| = 0 requires that the only query close
to being above threshold is possibly the last one. Without this condition, the algorithm
would be required to halt before the kth query with high probability, so it couldn’t possibly
satisfy the accuracy guarantee.

In terms of results, we can start seeing how AboveThreshold and SparseVector allow us
to preserve our privacy budget: before, our privacy guarantee was a function of the number
of queries k that we were running. The best we knew how to do was to have a privacy
guarantee of

√
kε to answer k queries; so, we had to set ε′ = ε√

k
to obtain ε-DP, which

means our accuracy guarantee was evolving in α ∼
√
k
ε

; we could answer k ∼ ε2α2 queries
with accuracy guarantee α. But now, the accuracy guarantees tells us that we can roughly
answer an exponential number of queries k ∼ exp(εα) before our mechanism halts with
accuracy α, while still preserving ε (rather than kε) differential privacy.

2 SparseVector Mechanism

The SparseVector mechanism takes as input a database x, an adaptively chosen stream of
sensitivity-1 queries {fi}, a threshold T , a total number of numeric answers c, and privacy
parameters (ε, δ). It outputs a stream of answers {ai} ∈ (R ∪ {⊥})∗.

Now let’s see the full SparseVector algorithm (Algorithm 2).
Now let’s take a closer look at what’s going on with this mechanism. The middle part

looks a whole lot like AboveNoisyThreshold (ANT). SparseVector (SV) works by repeated
calls to ANT as a subroutine up to c times, until our counter reaches the pre-set limit c.
Instead of halting after finding an above-threshold query, SV calls the Laplace Mechanism
as a subroutine to output a noisy answer to that query.

Notice that we re-draw fresh noise for every call to the Laplace Mechanism and ANT, so
SV is really just an adaptive composition of these two mechanisms. We allocate our overally
privacy budget ε between these two mechanisms, where ε1 is our ANT privacy budget and
ε2 is our Laplace Mechanism privacy budget.

Depending on whether our overall privacy goal is (ε, 0)-differential privacy or (ε, δ)-
differential privacy, we’ll have to set parameters within these subroutines differently. If
we want (ε, 0)-differential privacy, we’ll end up using Basic Composition1, so we’ll set our
privacy parameters so they sum to ε. If we want (ε, δ)-differential privacy, then we can use
Advanced Composition, and we’ll set our parameters according to the Corollary that we saw
last time.

1Note that we only proved Basic Composition for non-adaptive mechanisms, but the result also holds
for adaptive mechanisms. The Laplace Mechanism is used adaptively based on the results of the ANT
mechanism.
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Algorithm 2: SparseVector(x, {fi}, T, c, ε, δ)
SparseVector(x, {fi}, T, c, ε, δ):
Let ε1 = 8

9
ε and let ε2 = 2

9
ε

if δ = 0 then
Let σ(ε) = 2c

ε
;

else

Let σ(ε) =

√
32c ln(2/δ)

ε
;

end

Let T̂0 = T + Lap(σ(ε1))
Let count = 0
for each query fi do

Let vi = Lap(2σ(ε1)) if fi(x) + vi ≥ T̂count then
Output ai = fi(x) + Lap(σ(ε2))
Update count = count + 1 and T̂count = T + Lap(σ(ε1))

else
Output ai = ⊥

end
if count ≥ c then

Halt
end

end

2.1 SparseVector Privacy

Theorem 5. SparseVector is (ε, δ)-differentially private.

Proof. Case δ = 0:
We first consider the case where δ = 0. SV consists of c runs of ANT, where each run is
( 8
9c
ε, 0)-differentially private, and c runs of the Laplace Mechanism, where each run is ( 1

9c
ε, 0)-

differentially private. Then it will be straightforward to see through Basic Composition that
SV is overall (ε, 0)-differentially private. All that remains is to prove these claims about the
subroutines.

Recall that ANT added Lap(2/ε) noise to the threshold and Lap(4/ε) noise to the query
for overall ε-differential privacy. The subroutine in SV adds

Lap(σ(ε1)) = Lap

(
2c

ε1

)
= Lap

(
2c
8
9
ε

)
= Lap

(
2
8
9c
ε

)
noise to the threshold and

Lap(2σ(ε1)) = Lap

(
4
8
9c
ε

)
noise to the query. Therefore, each call to ANT is (ε′, 0)-differentially private for ε′ = 8

9c
ε.
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Recall that the Laplace Mechanism adds Lap(∆f/ε) = Lap(1/ε) noise for our sensitivity-
1 queries. The subroutine in SV adds

Lap(σ(ε2)) = Lap

(
2c

ε2

)
= Lap

(
2c
2
9
ε

)
= Lap

(
1
1
9c
ε

)
noise. Therefore, each call to the Laplace Mechanism is (ε′, 0)-differentially private for ε′ =
1
9c
ε.

Basic Composition gives that the overall privacy guarantee is:

c

(
8

9c
ε

)
+ c

(
1

9c
ε

)
=

8

9
ε+

1

9
ε = ε

so SV is (ε, 0)-differentially private.

Case δ > 0:
Now we address the case where δ > 0. We will follow a similar structure, where we prove
privacy guarantees of each subroutine, and then prove overall privacy through Advanced
Composition this time.

Each run of ANT is ( 8

9
√

8c ln(2/δ)
ε, 0)-differentially private. Our subroutine adds

Lap(σ(ε1)) = Lap

(√
32c ln(2/δ)

ε1

)
= Lap

(√
32c ln(2/δ)

8
9
ε

)
= Lap

 2
8

9
√

8c ln(2/δ)
ε


noise to the threshold and

Lap(2σ(ε1)) = Lap

 4
8

9
√

8c ln(2/δ)
ε


noise to the answer. Therefore, each call to ANT is (ε′, 0)-differentially private for ε′ =

8

9
√

8c ln(2/δ)
ε.

We have the following corollary of advanced composition (easy to check, but also can be
found on p52 of [1]):

Corollary 6 (Advanced Composition). If M : N|χ| → Rk is a k-fold adaptive composition
of (ε′/

√
8k ln(1/δ′), 0)-differentially private mechanisms, thenM is (ε′, δ′)-differentially pri-

vate.

Applying this result with k = c, ε′ = 8
9
ε, δ′ = δ

2
, we see that these runs of ANT together

are (8
9
ε, δ

2
)-differentially private.

Each run of the Laplace Mechanism is ( 1

9
√

8c ln(2/δ)
ε, 0)-differentially private, and instan-

tiating Corollary 6 with ε′ = 1
9
ε and δ′ = δ

2
gives that these c runs of the Laplace Mecha-

nism together are (1
9
ε, δ

2
)-DP. Basic Composition of these two subroutines gives that SV is

(8
9
ε+ 1

9
ε, δ

2
+ δ

2
)-differentially private, i.e., (ε, δ)-differentially private.
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2.2 SparseVector Accuracy

Before discussing the accuracy of SparseVector, let us recall the accuracy theorems for the
two sub-routines used in the SparseVector algorithm: AboveNoisyThreshold and the Laplace
Mechanism. Recall also that ANT outputs binary answers in {⊥,>}, so the ANT accuracy
corresponds to accurate comparison against a threshold.

Theorem 7 (ANT Accuracy). For any sequence of k sensitivity-1 queries {f1, f2, . . . fk}
satisfying |{i < k : fi(x) > T −α}| = 0, then AboveNoisyThreshold is (α, βANT )-accurate for

α =
8(log k + log(2/βANT ))

εANT
.

Theorem 8 (Laplace Accuracy). Let f : N|X | → Rk and let ML(x, f, εL) be the Laplace
mechanism, then ∀βL ∈ [0, 1],

Pr

[
‖f(x)−ML(x, f, εL)‖∞ ≥ log

(
k

βL

)(
∆f

εL

)]
≤ β.

To measure the accuracy of SparseVector, we have to modify our notion of accuracy from
ANT to a setting where the algorithm also outputs numeric answers for some queries.

Definition 9 (Numeric Accuracy). A mechanism that outputs a stream of answers {ai} ∈
R∪ {⊥} to a stream of k queries {fi} is (α, β)-accurate with respect to a threshold T if with
probability at least 1− β, the mechanism does not halt before fk, and

∀ai ∈ R |fi(x)− ai| < α and

∀ai = ⊥, fi(x) ≤ T + α.

The first condition above is the same additive accuracy notion that we use with numeric
outputs, e.g., for the Laplace mechanism: the answer produced by the mechanism should be
within an additive α of the true answer to the query on the database. The second condition
comes from ANT accuracy, where we only output whether a query answer is above or below
a threshold: if the mechanism produces ⊥, then the true query value should not be more
than α above the threshold.

Theorem 10 (Sparse Vector Accuracy). For any sequence of k sensitivity-1 queries {f1, f2, . . . fk}
satisfying |{i<k | fi(x) ≥ T − α}| < c, SparseVector is (α, β)-numeric accurate for

α =


9c(log k+log( 4c

β ))
ε

, if δ = 0
9(log k+log(4c/β))

√
8c log(2/δ)

ε
, if δ > 0

.

Note that the condition |{i<k | fi(x) ≥ T −α}| < c plays the same role as the analogous
condition in ANT accuracy. Without this condition, the algorithm should provide numeric
answers to more than c queries, which means that it should halt before the k-th query, which
would violate the “no early halting” accuracy condition in Definition 9.
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Proof. We will separately show that the two conditions required for accuracy are satisfied:
(1) fi(x) ≤ T + α when ai = ⊥, and (2)|fi(x)− ai| ≤ α when ai ∈ R.

Condition 1: fi(x) ≤ T + α when ai = ⊥.

If δ = 0, instantiate Theorem 7 with βANT = β
2c

and εANT = 8
9c
ε, to get that each of the c

calls to ANT is (α, β
2c

)-accurate for

α1 =
9c
(

log k + log
(

4c
β

))
ε

.

If δ > 0, instantiate Theorem 7 with βANT = β/2c and εANT = 8

9
√

8c log( 2
δ )
ε, to get that

each of the c runs of ANT is (α, β/2c)-accurate for

α1 =
9
(

log k + log
(

4c
β

))√
8c log(2/δ)

ε
.

Condition 2: |fi(x)− ai| ≤ α when ai ∈ R.

Instantiate Theorem 8 with k = 1, ∆f = 1, βL = β/2c. If δ = 0, use εL = 1
9c
ε, and δ > 0,

then use εL = 1

9
√

8c log(2/δ)
ε. This ensures that Pr[|fi(x)− ai| ≥ α2] <

β
2c

for each ai ∈ R, for

α2 =

9c log
(

2c
β

)
, ifδ = 0

9 log
(

2c
β

)√
8c log(2/δ)ε, ifδ > 0

.

Note that α := α1 ≥ α2, for any value of δ1. This can be seen by direct comparison on
the two terms. Thus each of the two c-subroutines is (α, β

2c
)-accurate. Taking a union bound

over all 2c failure probabilities gives that SparseVector is (α, β)-accurate.
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