
ISYE 8813: Algorithmic Foundations of Ethical ML Fall 2021

Lectures 9-10: SmallDB
Lecturer: Juba Ziani

So far we have seen tools (Laplace, Exponential, Randomize Response) that allowed us
to answer k queries with noise that scaled like Θ(k) for (ε, 0)-DP, and noise that scaled like
Θ(
√
k ln(1/δ)) for (ε, δ)-DP. Then we saw Sparse Vector, which allowed our noise to scale

like Θ(log k), with the caveat that we were only allowed to provide answers to c� k queries,
i.e. only those with “interesting”/outlying values. However, up until now, we were assuming
all the queries were independent of each other, and adding independent noise to them.

Today, we study the SmallDB Mechanism, which allows us to actually answer all k
queries, while only adding noise that scales like Θ(log k). The key trick to making that
work is to correlate the noise we add across queries. For example, imagine you first ask
the mechanism to answer query f , and it outputs f(x) + Lap(∆f

ε
), and you then ask the

mechanism to answer the exact same query f again. It should not redraw fresh noise to
answer the query, but should instead tell you that you already know the appropriate answer.
SmallDB does this by simply outputting a small database which provides approximately
accurate answers to all queries in a pre-specified class with high probability. It uses the
Exponential Mechanism to select such a database.

We note that this is a simple example of DP mechanisms outputting synthetic data,
rather than directly outputting answers to said queries on the true data. Note that releasing
such synthetic data can be very useful in practice: if we have a dataset composed of sensitive
and private data points that we may not want to share with a third-party, for privacy reason,
but we want to allow the third-party to still be able to perform his or her own statistical
analysis on this data, we can instead release the sanitized/private synthetic data to them.
For example, many research papers rely on the use of publicly available data; with synthetic
data, we can now publicly release a differentially private version of this data with similar
statistic properties as the original dataset, even if this dataset contains private data and
cannot be released itself.

1 SmallDB

Before we see the mechanism, let us formally define the problem.

1.1 Query Release Problem

Definition 1 (Query Release Problem). In the query release problem, given a class of
queries Q, the goal is to release an answer ai to each query fi ∈ Q such that the worst-case
additive error maxi |ai − fi(x)| is small, and our method for producing these answers {ai}
satisfies differential privacy.

1

We will typically consider the class Q of normalized linear queries, as defined below. We
note that the normalization refers to ensuring the query has range [0, 1]. Any linear query
with bounded range can be normalized to produce answers in this range.

Definition 2. A (normalized) linear query f over a data universe X is of the form f : X →
[0, 1], where the query assigns a numerical value to every element of the data universe. To
apply the linear query to a database x = (x1, ..., x|X |) ∈ N|X | (i.e., in histogram notation), we
abuse notation and define f(x) to be the average value of the query f on the database. That
is,

f(x) =
1

‖x‖1

|X |∑
i=1

xif(Xi).

Informally, when a data point has value Xi, query f has value f(Xi); in the histogram
representation, this happens xi times/for xi data points, hence the total sum of the values

present in database x is given by
∑|X |

i=1 xif(Xi). Since we have that ‖x‖1 =
∑|X |

i=1 xi = n is
the number of data points in the database (since xi is the number of data points of type Xi),
the average across all data points is given by 1

‖x‖1

∑|X |
i=1 xif(Xi).

Note that 0 ≤ f(x) ≤ 1 for any database x ∈ N|X |, and this implies that the sensitivity
is given by ∆f ≤ 1.

1.2 SmallDB Mechanism

SmallDB in Algorithm 1 takes in a database x, a class of queries Q, a privacy parameter ε,
and an accuracy parameter α. It outputs a database y, whose size depends on the log of
the number of queries you want to answer, and on the desired accuracy guarantee. It picks
this database y by running the Exponential Mechanism with utility function of the negative
error to the query release problem.

Importantly, SmallDB does not answer these queries, but rather, produces synthetic
data from which you can compute the answers yourself. This is how it correlates noise
across queries — not by explicitly correlating additive noise to query answers, which can be
problematic, but by generating a shared data structure used to answer queries.

Algorithm 1: SmallDB (x,Q, ε, α)

Input: database x, query class Q, privacy parameter ε, accuracy parameter α
Let R = {y ∈ N|X | : ‖y‖1 = log |Q|

α2 }.
Let u : N|X | ×R → R be:

u(x, y) = −max
f∈Q
|f(x)− f(y)|.

Sample and output y ∈ R with the Exponential Mechanism ME(x, u,R, ε).

2

Privacy of SmallDB: The privacy guarantee of SmallDB is immediate.

Theorem 3. SmallDB is (ε, 0)-DP.

Proof. SmallDP is an instantiation of the Exponential Mechanism. Privacy of SmallDB
hence follows immediately from privacy of the Exponential Mechanism.

Accuracy of SmallDB: Accuracy of SmallDB is a bit trickier. We will proceed by show-
ing:

1. There exists a “good” small database, in the sense that is approximately correct/accurate
on all queries, compared to if we were using the true database x. That is, there exists
a database y with ‖y‖1 = log |Q|

α2 such that −u(x, y) = maxf∈Q |f(x)− f(y)| < α.

2. We will sample such a “good” database with high probability.

We need both of these steps because the Exponential Mechanism’s accuracy guarantees
only ensure that with high probability we will sample an output that has quality score (i.e.,
query release error) close to that of the optimal small database; this is Step 2.

However, in our setting, we do not know the magnitude of the error of the optimal small
database compared to the original database x. This is what Step 1 gives us, and this why
we need both parts to bound accuracy of the SmallDB algorithm.

1.3 Chernoff bounds

First, we are going to digress and talk about Chernoff bounds, which we will need for the
proof of SmallDB accuracy. Chernoff bounds are an example of concentration inequalities
(much like Chebyshev and Markov that we used earlier in the class), that bounds how
far the empirical mean of several sampled random variables is from the expectation of the
distribution these variables are from, with high probability. The advantage of using Chernoff
bounds is that they show an exponentially decrease in the probability of being far away from
the mean as we obtain more samples; this is a much faster decrease/convergence rate than
what we saw with Chebyshev and Markov.

Theorem 4. Let X1, ..., Xn be independent random variables bounded such that 0 ≤ Xi ≤ 1
for all i ∈ [n]. Let S = 1

n

∑n
i=1Xi denote their sample mean, and let µ = E[S] denote their

expected mean. Then, (additive Chernoff bounds),

Pr[S > µ+ α] ≤ e−2nα2

,

Pr[S < µ− α] ≤ e−2nα2

,

and (multiplicative Chernoff bounds),

Pr[S > (1 + α)µ] ≤ e−nµα
2/3,

Pr[S > (1− α)µ] ≤ e−nµα
2/2.

3

1.4 Step 1: There exists a good small database

Back to accuracy of SmallDB, armed with Chernoff bounds, we will start with step 1 above,
by showing that there exists a “good” small database.

Theorem 5. For any finite class of linear queries Q and any α > 0, if R = {y ∈ N|X | :

‖y‖1 = log |Q|
α2 }, then for all x ∈ N|X |, there exists y ∈ R such that

max
f∈Q
|f(x)− f(y)| ≤ α.

Note that this is not saying anything about the SmallDB algorithm of which y is selected
by the algorithm, but rather the existence of such a good small database in the set R.

Proof. We will construct such a database y by taking m = log |Q|
α2 samples uniformly at

random (with replacement) from the elements of x. Let m = log |Q|
α2 and let s1, . . . , sm be

sampled i.i.d. from the following distribution:

Pr[si = Xj] =
xj
‖x‖1

∀i ∈ [m] and ∀j ∈ [|X |].

Define database y to contain the elements s1, . . . , sm. For any f ∈ Q, we have

f(y) =
1

‖y‖1

|X |∑
i=1

yif(Xi) =
1

m

m∑
i=1

f(si),

where the first equality is by the definition of linear queries, and that the second is obtained
by switching to look at value per entry in y. That is, we can view the function value f(y)
equivalently under the histogram database notation, or the matrix/multiset of row database
notation.

We are now looking at an average of independent random variables bounded between
0 ≤ f(si) ≤ 1, so we can use our new tool of Chernoff bounds to show that the empirical
mean of the f(si) is close to its expectation E[f(s)]. Then, because we take s = (s1, . . . , sm)
be from the same distribution as the empirical distribution/histogram of data points in
database x, the mean of the linear query on s will be the same as the mean of the query on
x.

E[f(y)] = E[
1

m

m∑
i=1

f(si)] =
1

m

m∑
i=1

E[f(si)]

=
1

m

m∑
i=1

 |X |∑
j=1

xj
‖x‖1

f(Xj)


∗
=

1

m

m∑
i=1

f(x)

= f(x)

4

Applying an additive Chernoff bound, we get,

Pr[|f(y)− f(x)| > α] ≤ 2e−2mα2

.

Taking a union bound over all linear queries of f ∈ Q gives that

Pr[max
f∈Q
|f(y)− f(x)| > α] ≤ 2|Q|e−2mα2

< 1,

for our choice of m = log |Q|
α2 .

1.4.1 The probabilistic method

Why is our proof above complete? We have only shown that there is probability strictly less
that 1 of sampling a small database that has error less than α. Why does this complete our
proof?

We randomly sampled a database y of size log |Q|
α2 . Through this random sampling process,

we found that with probability strictly less than 1, f(y) will be more than α away from the
desired answer f(x) on some query f . Let’s think of the reverse: if this probability was

exactly 1, this would mean that all databases of size log |Q|
α2 sampled from x would have some

query f for which it has additive error greater than α.
Since the probability is instead strictly less than 1, it means that there is some database

y we could have sampled that has |f(y) − f(x)| < α for all f ∈ Q. This does not tell us
what that database is or how to find it, but this tells us such a database exists.

This is an example of proof by the probabilistic method: considering a random process
and showing that there is a strictly positive probability of some good event happening. This
tells you that some realization of the randomness in that random process caused that good
event to happen, so there must exist some good realization for which your good event occurs.

Back to the proof, we have shown that there exists a good y of size log |Q|
α2 , and R contains

all databases of size log |Q|
α2 , so it must contain at least one good database for every input x.

1.5 Step 2: Selecting a good database

It now remains to prove that we can sample such a “good” database with high probability.
We will use the accuracy theorem of the Exponential Mechanism for this.

Proposition 6. Let Q be a finite class of linear queries, and let y = SmallDB(x,Q, ε, α).
Then, with probability ≥ 1− β,

max
f∈Q
|f(x)− f(y)| < α +

2
(

log |X |·log |Q|
α2 + log(1/β)

)
ε‖x‖1

.

Proof. Recall the accuracy theorem for Exponential Mechanism: for any β > 0 we have

Pr[u(ME(x, u,R, ε)) ≤ OPTu(x)− 2∆u(ln |R|+ log(1/β))

ε
] ≤ β. (1)

5

We will instantiate this theorem with the relevant parameters for SmallDB: (1) by con-

struction, |R| = |X |
log |Q|
α2 , so ln |R| = log |X | log |Q|

α2 , (2) by definition of the utility function,
u(ME(x, u,R, ε)) = u(y) = maxf∈Q |f(y)− f(x)|, (3) by Theorem 5, OPTu(x) ≤ α, and (4)
∆u = 1

‖x‖1
.

Plugging these parameter values into Equation (1) gives the desired bound:

Pr

max
f∈Q
|f(x)− f(y)| ≥ α +

2
(

log |X |·log |Q|
α2 + log(1/β)

)
ε‖x‖1

 ≤ β.

1.6 Putting it all together

These two steps combine to give us our final SmallDB accuracy guarantee.

Theorem 7. Let y be the database output by SmallDB(x,Q, ε, α/2). Then with probability
at least 1− β,

max
f∈Q
|f(y)− f(x)| ≤

(
16 log |X | log |Q|+ 4 log(1/β)

ε‖x‖1

)1/3

.

Proof. By Proposition 6, y = SmallDB(x,Q, ε, α/2) satisfies,

Pr

max
f∈Q
|f(x)− f(y)| ≥ α/2 +

2
(

4 log |X |·log |Q|
α2 + log(1/β)

)
ε‖x‖1

 < β.

Setting α/2 =
2(4 log |X|·log |Q|

α2
+log(1/β))

ε‖x‖1 , give the optimized bound in the theorem statement.

2 Improved SmallDB accuracy bounds using VC-dimension

We proved the previous result by showing that there exists a good database of size log |Q|
α2 ,

or equivalently that there is a small set of size at most |X |
log |Q|
α2 which must contain a good

outcome. This dependence on log |Q| assumes nothing about the structure of the class Q,
and in some cases, we can do better. For example, what if Q is just the same query over
and over? What if Q is infinite, but is well approximated by finite databases (e.g., queries
asking whether a point lies within a given interval of the real line)?

For this section, we are going to restrict to counting queries, f : X → {0, 1}—a subclass
of linear queries with binary outputs—and will improve the bound of Theorem 7 using VC-
dimension, which is a measure of how complex a class of queries is. We are calling these
queries as counting queries as f(x) = 1

n

∑
i xi (in matrix/multiset of row representations)

counts the number of entries with f(xi) = 1.

6

2.1 VC-Dimension

Definition 8 (Shattering). A class of counting queries Q shatters a collection of points S
if for every T ⊆ S, there exists an f ∈ Q s.t. {x ∈ S|f(x) = 1} = T .

That is, Q shatters S if for every one of the 2|S| subsets T of S, there is some function
in Q that labels exactly those elements as positive, and does not label any elements in
S \ T as positive. Intuitively, this means that no matter how I label my points (think of T
being a labelling, where points in T are labelled positively and points not in T are labelled
negatively), there is a query f in my class Q that classifies these points perfectly.

Example: We will consider some examples S ⊆ R2, and let Q be counting queries that
define half-spaces (linear classifier) in R2. For each set, we will ask: does Q shatter S?

These examples are illustrated below, where we either show the collection of half-spaces
that shatter S, or we show a set of points that cannot be exclusively labeled as positive by
any half-space in R2.

1. S1 Two points. Answer: Yes.

2. S2 Three points that do not lie one the same line. Answer: Yes.

3. S3 Three points lie on the same line. Answer: No.

4. S4 Four points lie on a quadrilateral. Answer: No.

Figure 1: S1 Figure 2: S2

Definition 9 (Vapnik-Chervonenkis (VC) dimension). A collection of counting queries Q
has VC-Dimension d if there exists some set S ⊆ X of cardinality |S| = d such that Q
shatters S, and Q does not shatter any set of cardinality d + 1. We denote this quantity
VC-DIM(Q).

7

Figure 3: S3 Figure 4: S4

Returning to the example where Q is the set of all counting queries that define half-spaces
in R2, then VC-DIM(Q)=3. We saw that Q shattered S2 and |S2| = 3. Also note that any
set S with |S| = 4 must either have all four points on a quadrilateral as in S4 (note that this
includes the case in which one point is in the convex hull of the three remaining points), or
three points on a line as in S3, or have multiple co-located points. None of these cases can
be shattered by Q.

The next lemma says that for any finite query class, the VC-dimension is not too large.

Lemma 10. For any finite class Q, VC-DIM(Q) ≤ log |Q|.

Proof. If VC-DIM(Q)=d, then Q shatters some set of items S ⊆ X with cardinality |S| = d.
Then S must have 2d distinct subsets, and |Q| ≥ 2d since Q must contain a distinct function
f for each subset of S.

2.2 Better SmallDB bounds

Returning to our SmallDB bounds, we can plug in VC-DIM(Q) instead of log |Q|, and by
Lemma 10, this can improve the accuracy guarantee.

Theorem 11. Let y be the database output by SmallDB(x,Q, ε, α/2). Then with probability
at least 1− β,

max
f∈Q
|f(y)− f(x)| ≤ O

((
log |X | · VC-DIM(Q) + log(1/β)

ε‖x‖1

)1/3
)
.

Proof. We will not re-do the whole proof here. Rather, we will just re-do the first part,
showing the existence of a small database y such that for all f ∈ Q, we have that

sup
f∈Q
|f(x)− f(y)| ≤ α,

and see how to optimally choose ‖y‖1. The rest of the proof will be the same as before,
invoking the accuracy guarantee of the exponential mechanism. The only thing that will

8

change will be the ln |R| terms, as a function of the range R we pick. To design R, we will
rely on the following theorem:

Theorem 12. Let Q be a class of counting queries, and let d = VC-DIM(Q). Let S1, . . . , Sm
be i.i.d. random variables. Then,

Pr

[
sup
f∈Q

∣∣∣∣∣E[f(Si)]−
1

n

n∑
i=1

f(Si)

∣∣∣∣∣ ≥ ε

]
≤ Cede−Kmε

2

for some well-chosen constants C,K.

[Note that most classes/books show a weaker version of this theorem. For this version
of the theorem, please refer to: M. Talagrand, ”Sharper Bounds for Gaussian and Empirical
Processes.”]

One can see the above as an analog of the Chernoff bound we derived previously for
the case in which Q was a finite query class. The theorem basically tells us that for any
f ∈ Q, the empirical loss f when facing samples S1, . . . , Sm concentrates around the expected
loss E[f(S)]. This theorem is often used in machine learning to show that empirical loss
minimization works, in that picking the hypothesis in an hypothesis class Q with minimal
empirical 0-1 classification loss also approximately minimizes the expected 0-1 loss (the
probability of making a wrong prediction).

Now, suppose Si’s are i.i.d. samples taken uniformly at random from the rows of database
x (i.e., Si = xi with probability 1/n), and let y = (S1, . . . , Sm). Similarly to the finite query
class case, we have that

E[f(Si)] =
1

n

n∑
i=1

xi = f(x),

as we select xi with probability 1/n. We also have by definition of y = (S1, . . . , Sm) and the
fact that f is a counting (hence linear) query that

f(y) =
1

n

n∑
i=1

f(Si).

We have therefore argued that

Pr

[
sup
f∈Q
|f(x)− f(y)| ≥ α

]
≤ Cede−Kmα

2

.

Now, plugging in m = d+lnC
Kα2 we get that

Pr

[
sup
f∈Q
|f(x)− f(y)| ≥ α

]
≤ Cede−d−lnC) = 1.

In turn, setting m > d+lnC
Kα2 – in particular, setting m = γ d

α2 for a big enough constant γ
guarantees that the above probability is strictly less than 1. As before, this implies the
existence of a database with ‖y‖1 = γd

α2 with supf∈Q |f(x)− f(y)| ≤ α.

9

Now, in that case, R = {y : ‖y‖1 = γd/α2}, and there are |R| = |X |γd/α2
. This gives

the desired

ln |R| = O

(
d log |X |
α2

)
that we find in the final bound of Theorem 11.

10

	SmallDB
	Query Release Problem
	SmallDB Mechanism
	Chernoff bounds
	Step 1: There exists a good small database
	The probabilistic method

	Step 2: Selecting a good database
	Putting it all together

	Improved SmallDB accuracy bounds using VC-dimension
	VC-Dimension
	Better SmallDB bounds

