
ISYE 8813: Algorithmic Foundations of Ethical ML Fall 2021

Lectures 11-12: Online MW
Lecturer: Juba Ziani

SmallDB required us to know all our queries in advance. We will now see a mechanism,
Private Multiplicative Weights (PMW), which allows queries to be chosen adaptively. This
mechanism will be a combination of Sparse Vector (to answer threshold queries adaptively)
and the multiplicative weight algorithm for learning linear predictors online.

1 High-level Summary of Private MW

View database x ∈ N|X | as histogram, and consider only linear queries (i.e., linear functions
of histograms). Then answering linear queries is the same problem as learning the linear
function x that defines query answers 〈x, q〉, given a query q ∈ [0, 1]|X |. This is the same
thing we did for SmallDB: we said, “I’m not going to give you answers to your queries.
Instead I’ll give you a database and you can answer your own queries.” However, SmallDB
comes with the caveat that we need to know the class of queries Q that we want to answer
in advance; the choice of small database that we pick to answer our queries on crucially
depends on it.

Then, what happens in the online setting, when I need to answer queries now before I
see what queries arrive next? What if I am doing some adaptive data analysis and I want to
pick the next query as a function of the answers to the previous query? One way to do so is
to use the Multiplicative Weight Algorithm (for linear queries), and to make it differentially
private.

Private Multiplicative weights can learn any linear predictor by making only a small
number of queries – which is good for our privacy budget. It maintains a public “hypothesis
predictor” and accesses the data only by requiring examples of queries where the hypothesis
differs greatly from the true data... which at this point should remind you that we saw a
way to do this just two weeks ago: SparseVector!

In this lecture, we will start with regular (non-private) MW, and then later we’ll make
it private by using SparseVector.

2 Regular (non-private) MW

We will think of a database x as being a probability distribution over data universe X . That
is, let ∆([X]) denote the set of all distributions over the set [|X |], and we have x ∈ ∆([X]).
This corresponds to scaling down every entry in the histogram version of x by a factor 1

‖x‖1
to ensure the entries sum to 1. Then the i-th entry of x corresponds to the fraction of data
points that are of type Xi. We will assume that there is a true database x that we do not

1

have access to and do not know, that determines the true answer to the queries f1, . . . , fk
that we run.

The set-up is then going to be the following:

• Queries will arrive sequentially. At each time step t, we receive a single query ft. We
observe an estimate of the answer to that query vt ∼ ft(x) (but note that we still do
not see the true database x). Note here that we allow vt 6= ft(x) (but we will expect vt
to still be close to ft(x)): this will be important when moving to the private version of
the algorithm, because we will want vt to be a differentially private estimate of ft(x).

• Our goal will then be to find a sequence of distributions xt = xt1, . . . , x
t
|X | on the data

universe X (think of x′i as the weight on Xi, or the probability of an element in our
database being Xi), one such distribution/database for each time step, to guarantee
accuracy. xt+1 is picked as a function of the history up until time t.

• Note that due to the online learning nature of the problem, we will necessarily be
making mistakes in the beginning of the algorithm, as long as we have not yet seen
enough data to learn how to answer our queries correctly. Hence, our accuracy objective
is going to be to limit the number of time steps in which |ft(xt)− ft(x)| is large.

MW is instantiated with a learning rate parameter η ≤ 1. We leave this as a free
parameter for now, but in later analysis, we will set η = α/2. This rule will be applied
iteratively to the public hypothesis predictor xt, so we will index all inputs and outputs by t,
corresponding to the t-th update step. The algorithm takes in the current public hypothesis
xt, a query ft on which the public hypothesis performs poorly (i.e., ft(xt) is far from ft(x)),
and vt, which is an estimate of query’s answer on the true database: ft(x). After a single
update step, it produces the next public hypothesis xt+1, which should provide a more correct
answer to query ft.

Algorithm 1: MW Update Rule: MW(xt, ft, vt)

Input: public hypothesis database xt, query ft on which the public hypothesis
performs poorly, estimate vt of true answer ft(x) on true database x
if vt < ft(x

t) then
Let rt = ft

else
Let rt = 1− ft

end
Update: for all i ∈ |X |, let:
x̂t+1
i = exp(−ηrt[i])xti
xt+1
i =

x̂t+1
i∑|X|

j=1 x̂
t+1
j

Output: xt+1.

The update step is the most straightforward: the algorithm updates each entry of the
database xt by a multiplicative factor (hence the name!) that depends exponentially on

2

the algorithm’s step size η and the direction in which the hypothesis was wrong, relative
to the true database. These multiplicative updates may not result in a valid probability
distribution, so the entries of the database are renormalized to ensure they sum to 1.

Now let’s revisit the sign flipping step. We’re creating a new vector that corresponds to
the function ft, and adjusting this vector to account for the direction in which the hypothesis
was wrong. Intuitively, if ft(x) < ft(x

t), then the query answer on the hypothesis database
is too large, and we need to down-weight the entries of xt that cause large values of ft, and
vice versa in the alternative case. So, in the case where ft(x

t) is too large, we want to give
more weight to the elements Xi in the universe where ft(Xi) is small, and less weight to the
elements where it is big. So, in that case, by letting rt = ft, we have that more weight is
given to the elements with the smaller rt, hence the smaller values of ft, as we wanted!

3 MW Convergence

The main result that we will show for non-private MW is that (under certain technical
conditions), it converges with a small number of updates.

Theorem 1. Fix a class of linear queries Q and a database x ∈ ∆([|X |]), and let x1 ∈
∆([|X |]) be the uniform distribution over X . That is, let x1

i = 1
|X | for all i. Now consider

a maximal length sequence of databases xt for t ∈ {2, . . . , L} generated by setting xt+1 =
MW (xt, ft, vt) with learning rate η = α/2, where for each t, ft ∈ Q and vt ∈ R,

1. |ft(x)− ft(xt)| > α and

2. |ft(x)− vt| < α.

Then L ≤ 4 log |X |
α2 .

Note that on the last database xL+1, it must be that for all f ∈ Q, |f(x)− f(xL+1)| ≤ α,
otherwise we could extend the sequence, contradicting maximality. This theorem says if you
re-run MW many times, always fining some query ft on which you are doing poorly (i.e.,
ft(x

t) is far from ft(x)), then after L rounds, you will have to stop because you are doing
well on all queries.

Private MW (which we will see next lecture) works by maintaining a public approximation
xt to the database x. Given an input query f , the mechanism will check the (noisy) difference
|f(x)−f(xt)| to see if the public approximation xt is good or bad with respect to this query.
If the noisy difference is large, then Private MW calls the Laplace Mechanism to produce a
noisy approximation vt(= f(x) + Lap) to the true answer f(x), and then the MW update
rule called with parameters (xt, f, vt). This is where SparseVector comes in: we only need
to update our noisy approximation when it does poorly, i.e. when |f(x) − f(xt)| is large
enough/bigger than some threshold; the rest of the time, we can decide to output nothing.

If this update rule is invoked only when xt is truly bad on f (i.e., when f(x)−f(xt) large,
Condition 1 of Theorem 8), and if the approximation vt is sufficiently accurate (Condition
2 of Theorem 8), then Theorem 8 tells us that we do not need to do too many updates

3

(because L is bounded) and the resulting xL+1 gives accurate answers to all queries in Q
(because we can not find another bad query).

We will write this formally as algorithm in the next lecture, but we will first prove this
theorem. We will do it by keeping track if a potential function Ψ to measure the similarity
between the public hypothesis xt at time t, and the true database x. We will show three key
facts:

1. Ψ does not start out too large.

2. Ψ decreases significantly with each update

3. Ψ is always non-negative.

These three things will show that we do not need too many update rounds.

Quick note: This proof technique, called a “potential argument”, is used often in analyzing
algorithms. These same three steps are used in all proofs of this style. The critical step of
the analysis is choosing a potential function that captures progress of the algorithm toward
its final goal.

Proof of Theorem 8. We define our potential function to be the relative entropy or KL-
divergence between x and xt:

Ψt
∆
= KL(x||xt) =

|X |∑
i=1

xi log

(
xi
xti

)
.

Proposition 2 (Condition 3). For all t, Ψt ≥ 0.

Proof. Relative entropy is always non-negative by the log-sum inequality, while states that
if a1, . . . , an and b1, . . . , bn are all non-negative and sum to 1, then

Ψ =
n∑
i=1

ai log
ai
bi
≥
∑
i

ai log

∑
i ai∑
i bi

= 0.

Proposition 3 (Condition 1). Ψ1 ≤ log |X |.

Proof. Recall that x1
i = 1

|X | for all i, so

Ψ1 =

|X |∑
i=1

xi log(|X |xi).

This quantity is maximized when ∃j such that x[j] = 1, and xi = 0 for all i 6= j, giving
Ψ1 = log |X |

4

We have done the two easy parts. Now we need to show that Ψ drops by at least α2

4

with every update. Because Ψ starts at log |X | and can not go negative, then there can be

at most L ≤ 4 log |X |
α2 update steps.

Lemma 4 (Condition 2)). 1 For all Ψt −Ψt+1 ≥ η(〈rt, xt〉 − 〈rt, x〉)− η2

Proof.

Ψt −Ψt+1 =

|X |∑
i=1

xi log

(
xi
xti

)
−
|X |∑
i=1

xi log

(
xi

xt+1
i

)

=

|X |∑
i=1

xi

(
log

(
xi
xti

)
− log

(
xi

xt+1
i

))
(dist. prop.)

=

|X |∑
i=1

xi log

(
xt+1
i

xti

)
(log rule)

=

|X |∑
i=1

xi log

(
xt+1
i /

∑|X |
i=1 x̂

t+1
i

xti

)
(def. of xt+1

i)

=

|X |∑
i=1

xi

log

(
xti. exp(−ηrt[i])

xti

)
− log

 |X |∑
j=1

exp(−ηrt[j]xtj)

 (log rule)

= −

 |X |∑
i=1

xiηrt[i]

− log

 |X |∑
j=1

exp(−ηrt[j])xtj

 (cancel first term, dist sum,
∑
i

xi = 1)

(∗)
= −η〈rt, x〉 − log

 |X |∑
j=1

exp(−ηrt[j])xtj

 (def. of 〈·, ·〉, keep second term same)

Before proceeding, let’s look at this second term.

exp(−ηrt[j]) ≤ 1− ηrt[j] +
η2(rt[j])

2

2
≤ 1− ηrt[j] + η2,

where the first inequality comes from a Taylor expansion and the second inequality comes
from the fact that ηrt[j] ≤ 1.

1Later we will set η = α
2

5

Using this to continue to bound (*):

(∗) ≥ −η〈rt, x〉 − log

 |X |∑
j=1

xtj(1 + η2 − ηrt[j])

= −η〈rt, x〉 − log

|X |∑
j=1

(1 + η2 − η
∑
j

xtjrt[j]) (pull sum inside)

= η〈rt, x〉 − (η2 − η〈rt, xt〉) (log(1 + y) ≤ y for y > −1)

= η(〈rt, xt〉 − 〈rt, x〉)− η2 (collect terms)

Now let’s finish the proof of Theorem 8. We have |ft(x)−ft(xt)| ≥ α and |vt−ft(x)| < α
(by assumption), so ft(x) < ft(x

t) iff vt < ft(x
t). Also from the algorithm, rt = ft if

ft(x
t)− ft(x) ≥ α and rt = 1− ft if −ft(xt) + ft(x) ≥ α. Therefore, (〈rt, xt〉 − 〈rt, x〉) ≥ α.

By Lemma 4 and setting η = α
2
,

Ψt −Ψt+1 ≥
α

2
(α)− α2

4
=
α2

2
− α2

4
=
α2

4
.

Finally,

0 ≤ ΨL ≤ Ψ0 − L
α2

4
≤ log(|X |)− Lα

2

4
⇒ L ≤ 4 log(|X |)

α2
.

4 Building up to Private MW

The queries to SparseVector will be about the error |fi(x)− fi(xt)|, and we will call these
answers Ei to emphasize that we’re asking about the error, not about the function’s value.
SparseVector can only tell us if something is above or below a threshold. We’ll capture the
absolute value by running two copies of SparseVector to ask about both fi(x) − fi(xt) and
fi(x

t)− fi(x).

Theorem 5 (PMW privacy). PrivateMW is (ε,δ)-DP

The proof of Theorem 5 follows immediately from the privacy of SparseVector because
PrivateMW only accesses the data through SparseVector. Everything else is post-processing.

Theorem 6 (PMW accuracy). With probability (1 − β), for all fi, PrivateMW returns an
answer ai such that |fi(x)− ai| ≤ 3α for:

α =

36 log |X |
(

log 2|Q|+ log(
32 log |X |1/3‖x‖2/31

β
)
)

‖x‖2
1ε

1
3

if δ = 0, and

6

Algorithm 2: PrivateMW(x, {fi}, ε, δ, α, β,Q)

Let c = 4 log |X |
α2 ;

if δ = 0 then

Let T =
18c(log(2|Q|) + log(4c

β
))

ε‖x‖1

;

else

Let T =
(2 + 32

√
2)
√
c log(2/δ)(log(k) + log(4c

β
))

ε‖x‖1

;

end
Initialize Sparse(x, {fi}, T, c, ε, δ), outputting {Ei};
Let t = 0, x0 ∈ ∆([|X |]) s.t. x0

i = 1
|X | ∀i ∈ [|X |];

for each query fi do
Let f ′2i−1(x) = fi(x)− fi(xt);
Let f ′2i(x) = fi(x

t)− fi(x);
if E2i−1 = ⊥ and E2i = ⊥ then

Let ai = fi(x
t);

else
if E2i−1 ∈ R then

Let ai = fi(x
t) + E2i−1;

else
Let ai = fi(x

t)− E2i;
end
Let xt+1 = MW (xt, fi, ai);
Let t = t+ 1;

end

end

α =

(2 + 32
√

2)
√

log |X | log 2
δ
(log 2|Q|+ log 32‖x‖1

β
)

‖x‖1ε

1
2

if δ > 0.

Note that when δ > 0, we get better accuracy in terms of ‖x‖1 because of the better
composition theorems for (ε, δ)-DP.

Proof sketch. Use SparseVector accuracy theorem to show that w.h.p,

1. MW update rule is only called when |fi(x)− fi(xt)| is large. In this case, we have a
noisy, private answer to fi(x)− fi(xt) that we can use to correct for the error on fi(x

t)
and output an accurate ai.

2. The released noisy approximation to fi(x) is accurate the rest of the time, because
we only call the MW update rule when |fi(x) − fi(xt)| is large; when we don’t, f(x

t)

7

accurately estimates fi(x).

Recall from last time, these were the two conditions needed to prove that MW converged
quickly. Then use MW convergence theorem to show that after c = 4 log |X |

α2 updates, Pri-
vateMW answers all queries in Q approximately correctly.

Let us now go through the proof more carefully.

Proof. We start by reminding the reader of the following accuracy guarantees of multiplica-
tive weights and of SparseVector.

Theorem 7 (Sparse Vector Accuracy). For any sequence of k sensitivity-1 queries {f1, f2, . . . fk}
satisfying |{i<k | fi(x) ≥ T − α}| < c, SparseVector is (α, β)-numeric accurate for

α =

9c(log k+log(4c

β))
ε

, if δ = 0
9(log k+log(4c/β))

√
8c log(2/δ)

ε
, if δ > 0

.

Remember that (α, β)-accuracy requires that, with probability 1− β:

• We have fi(x) ≤ T + α for all queries fi we did not answer

• We have |fi(x)− ai| ≤ α for all queries fi we answer, where ai is the (noisy) numeric
answer to our query.

• We do not terminate early. This means we answer at most c queries among the k
we have seen so far. This follows from the fact that we only answer queries with
fi(x) + Lap(1/ε) ≥ T̂ = T + Lap(1/ε). In fact, in the proof of sparse vector, this
is implied by the fact that we have no more than c queries with fi(x) ≥ T − α, and
concentration bounds on T̂ and the Laplace noise we add (we argued T̂ was α/2-close
to T , and similarly |Lap(1/ε)| ≤ α/2.).

Theorem 8. Fix a class of linear queries Q and a database x ∈ ∆([|X |]), and let x1 ∈
∆([|X |]) be the uniform distribution over X . That is, let x1

i = 1
|X | for all i. Now consider

a maximal length sequence of databases xt for t ∈ {2, . . . , L} generated by setting xt+1 =
MW (xt, ft, vt) with learning rate η = α/2, where for each t, ft ∈ Q and vt ∈ R,

1. |ft(x)− ft(xt)| > α and

2. |ft(x)− vt| < α.

Then L ≤ 4 logX
α2 .

Now, the idea is then to pick c = 4 log |X |
α2 : indeed, we are expecting to make at most c

mistakes in which |fi(xt)− fi(x)| is large as long as xt is chosen according to multiplicative
weights. We will also pick T = 2α. Also, we set k = 2|Q|, because we want to be able to use
up to 2|Q| queries in SparseVector (we compare f ′2i−1 and f ′2i to our threshold T for each
query fi). We can then plug the accuracy guarantees of both MW and SparseVector to get the

8

result. More precisely, in the δ = 0 case, as long as (note that the ‖x‖1 renormalization comes
from the fact that we are no longer working with sensitivity 1 queries as in SparseVector,
but with sensitivity 1/‖x‖ queries)

α ≥ 9c (log k + log (4c/β))

ε‖x‖1

=
36 log |X | (log 2|Q|+ (16 log (|X |/βα2)))

α2‖x‖1ε

we have that with probability at least 1− β:

1. By the accuracy guarantee of Sparse Vector, we have that for all i such that we do not
answer answer fi, it must be that both f ′2i−1(x) ≤ T+α = 3α and f ′2i(x) ≤ T+α = 3α.
This can be rewritten immediately as

|fi(x)− fi(xt)| ≤ 3α,

giving us the desired accuracy guarantee.

2. For all queries such that we have a numeric answer, i.e. either E2i−1 or E2i is in R. So,
we have two cases:

(a) E2i−1 ∈ R: then, we have that E2i−1 must be close to fi(x)− fi(xt): the accuracy
guarantee of SparseVector requires that

|E2i−1 − f2i−1(x)| =
∣∣E2i−1 − (fi(x)− fi(xt))

∣∣ ≤ α.

We then have that

|ai − fi(x)| = |fi(xt) + E2i−1 − fi(x)| ≤ α.

(b) Else, we must have that E2i ∈ R. We then get the same result that |ai−fi(x)| ≤ α
by the same argument.

3. The algorithm does not halt early and we do not leave some of the queries un-answered,
which means we have either E2i−1 ∈ R or E2i ∈ R at most c times. This is implied by
the fact that we have f ′2i−1(x) ≥ T − α = α or f ′2i(x) ≥ T − α = α at most c times.

This last statement follows from the accuracy of the Multiplicative Weight algorithm,
which states that there can be almost 4 log |X|

α2 = c times that we have i) |f ′2i−1(x)| =
|fi(x)− fi(xt)| ≥ α (or |f2i(x)| ≥ α) and ii) |ai − fi(x)| ≤ α. This second condition is
always satisfied when we have Ej ∈ R, by point #2/the accuracy of SparseVector, i)
holds at most c times.

To get the final accuracy guarantees, it just suffices to note that

α ≥ 36 log |X | (log 2|Q|+ log (16 log (|X |/βα2)))

α2‖x‖1ε

is satisfied by the desired bound (will not do the exact algebra here).

9

	High-level Summary of Private MW
	Regular (non-private) MW
	MW Convergence
	Building up to Private MW

