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Lectures 14: Formalizing ML Assumptions and Fairness
Lecturer: Juba Ziani

Note that the lecture notes below are based on [FSV16].
What does it mean for an algorithm to be “fair”? To even start to answer the question,

one needs to examine the assumptions that we make about fairness in society. To do so,
we are going to start by formalizing the different spaces that a typical machine learning
algorithm is working with.

1 Spaces: Construct, Observed and Decision

At a high-level, what machine learning does is the following: it takes a data-set as an input,
tries to learn properties of this dataset and use these properties to make decisions on future
data points. I.e., we take inputs from some feature space and return outputs in a decision
space. For example, if you want to predict whether someone is likely to re-pay their loans,
you can take as an input a dataset that contains features about individuals’ family and
financial situations, and about whether they re-payed their loans in the past. You then train
a machine learning algorithm that tries to find patterns in this data, and to see how certain
features correlate with the desired target variable (whether someone is likely to repay their
loan).

The data and features we work with Defining the feature space is not a trivial problem,
and is often subjective as we saw before. For example, look at college admission decisions.
Admission offices need to determine what aspects of a person they want to use in their
admission decision. This might include potential, intelligence, technical ability, diligence.

But one issue is that it is not even clear in practice that such attributes can be observed
directly. Generally, we do not access features such as ability or potential directly; we measure
them, for example through standardized testing. This is where an important distinction
arises: there are the “true” features that we want to work with, and the features we observe
that are often just a proxy for these true features. A machine learning algorithm will work
with observed features, which are usually an imperfect representation of or way to measure
the desired true features.

To deal with this distinction, CITE introduces two distinct notions of feature spaces
that a machine learning algorithm may care about. The first one is the construct space, that
contains the true features we want to make a decision on:

Definition 1 (Construct Space). The construct space is a metric space CS = (P, dP ) con-
sisting of individuals and a distance between them. The distance dP is a measure of closeness
of different vectors of features in the construct space.
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This is the space containing the features that we would like to make a decision based on.
These are the “desired” or “true” features at the time chosen for the decision, and the ability
to accurately measure similarity between people with respect to the task. Instead, we will
only be able to work with the features we observe. These features come from a (generally
imperfect, noisy) process that maps “real” features to observations:

Definition 2 (Observed space). The observed space is a metric space OS = (P̂ , dP̂ ). We

assume an observation process g : P → P̂ that generates an entity p̂ = g(p) from a person
p ∈ CS.

The decision process Finally, the whole point is that we want to feed our observed data
into a machine learning algorithm, that is going to make decisions based on that data (what
credit score to assign to person X? Should we admit student Y? Should we release Z on bail?)
The decision space is going to be the space of possible decisions we can make on someone.

Definition 3 (Decision Space). A decision space is a metric space DS = (O, dO), where
O is a space of outcomes and dO is a metric defined on O. A task T can be viewed as the
process of finding a map from P̂ to O.

Some common decision spaces:

• {0, 1} or {−,+}. Here, the goal is to assign a binary outcome or decision to each data
point. I.e., whether we will give a loan or not to a specific individual. This is known
as classification.

• [0, 1]. Here the goal is to assign a score (renormalized between 0 and 1) to rate the
“quality” of a data point or agent. For example, rather than a 0−1 decision on whether
to give someone a loan, this could be a credit score. This could also be an estimate of
the probability that that person repays their loan. In this case, we are in a regression
setting.

• etc.

How the spaces interact. Algorithmic decision-making is a set of mappings between the
three spaces defined above:

• The desired outcome is a mapping from CS to DS via an unknown and complex
function o = f(X1, X2, . . .) of features that lie in the construct space. This is the
relationship between true features and outcomes.

• In order to implement an algorithm that predicts the desired outcome, we must first
extract usable data from CS: this is a collection of mappings from CS to OS. The
features Y1, Y2, . . . , Y` in OS might be:

– noisy variants of the Xi : Yi = g(Xi) where g(·) is some stochastic function,
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– some unknown (and noisy) combination of Xi : Yi = g(Xi1 , Xi2 , . . .), or

– new attributes that are actually independent of any of the Xi.

Further, some of the Xi might even be omitted entirely when generating Yi.

• Our goal is (ideally) to determine o. We instead design an algorithm that learns
õ = f̃(Y1, Y2, . . . Y`) i.e a mapping from OS to DS. The hope is that õ ' o.

2 Formalizing Fairness

The first, formal definition of fairness we will see here captures the following intuition:
”elements” that are similar should be treated roughly the same way. Generally, many of the
fairness metrics that we will see through the semester will have this flavor:

• When we will talk about fairness at the individual level, we will take each element to
be an individual and require that similar individuals must be treated similarly.

• When talking about fairness at the level of group/sub-populations, we will take each
element to be a group, and will aim to guarantee that groups will be treated similarly
(we will see what this means later on).

We will formally write this notion of fairness using a notion of “distortion”. At a high-
level, distortion measures how much a mapping f from a space X to a space Y distorts this
space. When the distortion is small, it means that if two individuals p, q ∈ X are close in
terms of features in X, f(p) and f(q) should also be close in Y : this intuitively aligns with
our definition of fairness that we should make similar decisions on similar individuals. On
the other hand, high distortion means that p, q can be close but f(p), f(q) far from each
other (or vice-versa).

Here, I am talking about an individual notion of distortion, but we could also imagine
defining this distortion across different socio-economic groups rather than individuals. At
the high-level, the idea is to have a metric ρ(X ,Y) that measures the distortion between
these metric spaces. One example can be the following:

Definition 4 (Additive Distortion). Let (X, dX) and (Y, dY ) be two metric spaces and let
f : X → Y be a map from X to Y . The distortion ρf of f is defined as the smallest value
such that for all p, q ∈ X

|dX(p, q)− dY (f(p), f(q))| ≤ ρf

The distortion ρ(X, Y ) is then the minimum achievable distortion ρf over all mappings f .

CITE also looks at more general notions of distortion, in particular some that can be
applied to groups rather than just individuals. We can then write our notion of fairness or
non-discrimination as follows:
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Definition 5 (Non-Discrimination). Let CS = (X, dX) and DS = (Y, dY ). A mapping
f : CS → DS is t-nondiscriminatory if the group skew ρ(X ,Y) ≤ t.

This allows for a more fine-grained approach to fairness (compared to the original) defi-
nition in which we “control” the level of unfairness we provide. This is where the parameter
t comes in

3 Assumptions we make and how they affect fairness

The difficulty here is that we want the mapping from CS to DS to be fair, but we only observe
features in OS. Unfairness can then arise at several levels, depending on what assumptions
we make about the world, and in particular about how the construct space maps to the
observed space. CITE defines assumptions that we can make about this process.

Assumptions on the mapping from CS to OS There are different assumptions we
can make on the mapping between the construct space and observed space by trying to
characterize whether the construct space and observed space are essentially the same, or
whether there is distortion between these spaces.

Assumption 6 (What You See Is What You Get (WYSIWYG)). There exists a mapping
f : CS → OS such that the distortion ρf is at most ε for some small ε > 0. Or equivalently,
the distortion ρ between CS and OS is at most ε.

In practice, we can think of ε as a very small number. In the college admissions setting, the
WYSIWYG is the assumption that features like SAT scores and high-school GPA (which are
observed) correlate well with the applicant’s ability to succeed (a property of the construct
space). More precisely, it assumes that there is some way to use a combination of these
scores to correctly compare true applicant ability.

In practice, we often believe this assumption not to be true. In many real-world societal
applications, the noise in the transformation from construct to observed space is non-uniform
in a societally biased way. This is what we refer to as structural bias.

We represent groups as a partition of individuals into sets G1, G2, . . . , Gk. Structural bias
manifests itself in unequal treatment of groups. In order to quantify this notion, [FSV16]
defines a notion of group skew : the way in which group structure might be distorted between
spaces. Structural bias can then be defined as follow:

Definition 7 (Structural Bias). The metric spaces CS = (P, dP ) and OS = (P̂ , dP̂ ) admit
t-structural bias if the group skew σ(X ,Y) > t.

For example, researchers have shown that the SAT verbal questions function differently
for the African-American subgroup, so that the validity of the results as a measure of ability
are in question for this subgroup. In the case where SAT scores are a feature in the observed
space, this research indicates that we should consider these scores to be the result of structural
bias.
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How do these assumptions affect fairness? One “naive” way to think about fairness is
to take the construct space totally out of the equation, and worry about what we call direct
discrimination: i.e., even if two individuals have similar (or the same) observed features, we
make different decisions on them. This is called direct discrimination (or often “disparate
treatment”) because the decision rule/algorithm itself that we use decides to treat people
that look similar differently.

Definition 8 (Direct Discrimination). The metric spaces OS = (X, dX) and DS = (Y, dY )
admit t-direct discrimination with respect to decision rule f̃ if the distortion satisfies ρ(X ,Y) >
t.

Whether we should prevent or aim for direct discrimination is actually a function of the
assumptions we make and the world view we take:

• In our first view of the world (WYSIWYG), one can see pretty easily that preventing
direct discrimination is sufficient to obtain non-discrimination. Indeed, in this case,
the distortion comes entirely from the mapping from observed to decision spaces, and
it suffices to make this distortion small. This is exactly what direct discrimination
covers.

• In the second view of the world in which structural bias is present, preventing direct
discrimination now can be insufficient. In particular, the mapping f̃ should aim to
correct for the structural bias in order to obtain fair decisions. We may want, for
example, to make similar decisions on individuals that look different in observed space,
just because they actually look similar in the construct space. Back to the college
admissions example, the idea is that if we do not allow direct discrimination, the fact
that the same SAT score has different meaning for different groups and that we failed
to account for structural bias will lead to (indirect) discrimination.
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