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Lectures 17: Algorithmic Interventions for Statistical Fairness
Lecturer: Juba Ziani

In this lecture, we will see some of the techniques that have been used in the algorithmic
fairness literature to guarantee statistical fairness. Note that the list is not exhaustive, and
is only intended to give you a sense of what kind of interventions arise in the literature.
There is still a lot of research and a lot of open questions in how to obtain fairness in a lot
of settings of interest.

1 Pre-processing for demographic parity

One of the techniques we can use to obtain statistical fairness is pre-processing. I.e., we do
not touch the machine learning algorithm itself, but act even before then: we try to modify
the data so as to remove bias in this data. Here, we will look at one way to do so in the
context of demographic parity. Remember the notations from last lecture: we have a set of
features X, a sensitive attribute A ∈ 0, 1, and decision or a score R. We want to guarantee
that R is statistically independent of A, or, in other words

Pr[R = 1|A = 0] = Pr[R = 1|A = 1].

We may also want just to achieve a relaxation of that definition, of the form:

Pr[R = 1|A = 1]

Pr[R = 1|A = 0]
≥ τ,

for some threshold τ ∈ [0, 1]; the higher the threshold, the more fair and stringent the
guarantee.

In our pre-processing step, we will try to lose any information in the data X on whether
someone belongs to the protected subgroup defined by A = 1; then, our decisions will be sta-
tistically independent of each individual’s group, which is sufficient to achieve demographic
parity. This property on its own is easy to achieve: one can decide simply to not use any in-
formation at all about an agent when making a decision about him/her; but this is obviously
comes at the cost of making our decisions trivial and useless. What we want to do is to lose
information about the protected sub-group in the data while retaining as much information
and predictive power as possible.

Formnally: instead of working with the individuals’ feature vector X, we will carefully
design some function f(.) that maps the features spaces to a new space. Let Z , f(X).
We will then restrict our attention and perform any machine learning task and decision
only using Z. The idea then is to try to design f(.) such that Z = f(X) is correlated
with A as little as possible. Then, any algorithm that makes decisions based on Z only
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will approximately satisfy R = g(Z)⊥A (for some randomized mapping g representing the
machine learning model).

Here, we will look at the approach of [ZWS+13], which is one of the first to propose a
pre-processing approach for demographic parity. There, they pick Z ∈ {1, . . . , K}. This
corresponds to a clustering of all possible vectors into K different clusters, each cluster
containing simlar feature vectors X on which we want to make similar decisions. For each
cluster k, we associate a vector vk (in the original space of features X): you can think of this
vk as the center of the cluster, which will be used for training the model. They then aim to
design the clusters such that 3 properties hold:

1. Statistical independence between Z and A:

|Pr [Z = k|A = 0]− Pr [Z = k|A = 1]| is small.

2. The new representation does not lose too much information. I.e., given any training
sample xn, (

xn −
K∑
k=1

Pr [Z = k|xn] vk

)2

is small

Note that
∑n

k=1 Pr [Z = k|xn] vk is the expected vector to which xn is associated, and
we are just saying that we want this expected vector or representation to be close to
xn.

3. The predictions are still accurate. I.e., if yn is the true label for agent i with features
xn, and we assign a label of wk to cluster i, we want that∣∣∣∣∣yn −∑

k

Pr [Z = k|xn]

∣∣∣∣∣ is small.

Simplifying notations, let Mnk = Pr [Z = k|xn], x̂n =
∑

k Pr [Z = k|xn] vk the new rep-
resentation for agent n, ŷn =

∑
k Pr [Z = k|xn]wk the predicted label for agent n, and

MA
k = 1

|A|
∑

n∈AMnk the probability that Z = k in group A. The authors then aim to
optimize the following loss function to obtain the new representation Z and the associated
labels wk for Z = k:

L = α

K∑
k=1

|M1
k −M0

k |+ β
N∑
n=1

(xn − x̂n)2 − γ
N∑
n=1

(yn log ŷn + (1− yn) log(1− ŷn))

The first term corresponds to 1), the second term to 2), the third term to 3). The third-term
is just standard logistic regression. α, β, γ are hyper-parameters that can be optimized over
for better results.

The authors evaluate their results on three different datasets (German, Adult, and
Health). German = german credit dataset with 1000 instances which classify bank account
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holders in credit classes Good or Bad; each person is described by 20 attributes. They use
age as the sensitive attribute. Adult = income dataset with 45,222 instances, 14 features,
and the target variable is whether someone’s income is larger than 50k dollars. They use
gender as the sensitive attribute. The Health dataset contains 147,473 patients, using 139
features; the target variable is the number of days a person spends in the hospital on a given
year. The sensitive attribute is once again age. The authors split their data into a training
and a validation set, and obtain the following results:

1. In Figure 1, the authors study how well one can predict the sensitive attribute from
i) the raw data (in yellow-green) and ii) the representation they learned (in blue).
In all three datasets, the figure shows that the learned representation contains less
information about the sensitive attribute than the original data. The improvement
is particularly impressive for the Adult and Health datasets. In fact, in the health
dataset, the accuracy of predicting A from Z is close to 50 percent: i.e., it is not
possible to predict the sensitive attribute from the new, fair representation better than
random guessing! This means A and Z are almost perfectly statistically independent.

Figure 1: Accuracy of predicting A from X (in green) and Z (in blue)

2. In Figure 2, the authors look at the accuracy and the level of discrimination of their
approach, compared to a baseline that do not take fairness into account, and two
“naive” baselines for fairness (more information in the paper). They show their method
leads to little discrimination, while retaining good accuracy.
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Figure 2: Accuracy and discrimination of the authors approach (in blue) compared to pre-
vious baselines

2 Including fairness constraints at training time

Here, a common approach is to explicitly add constraints that our classifier has to satisfy.
Imagine the goal is to train a classifier that is parametrized by a vector parameter θ. Gen-
erally, the way this is done in many “simple” settings (linear or logistic regression, SVM,
etc.) is that we want to find the parameters that minimize a convex (for tractability) loss
function. For example, for a linear model and linear regression, we might want to minimize
the mean squared error. I.e., given pairs of features and labels (xi, yi) for n ∈ [N ], we want
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to find the parameter θ̂ that minimizes loss function

L((xi, yi)n∈N ; θ) =
N∑
n=1

(
θ>xi − yi

)2
.

To make sure the parameters satisfy a fairness constraint , one can try to explicitly write
down such a constraint in the optimization program. Note that demographic parity means
that the prediction rθ(xi) = θ>xi (in the linear regression setting) is independent of group
membership A. One way to do so is to require that the empirical covariance matrix between
r and A is close to 0. This is the approach taken for example in [ZVRG17]. The true
covariance matrix can be written as

E [(a− E[a]) (rθ(xi)− E [rθ(xi)])] = E [(a− E[a])rθ(xi)]− E [(a− E[a])]E [rθ(xi)]

= E [(a− E[a])rθ(xi)] .

An empirical estimator of the covariance is then given by

1

N

N∑
n=1

(ai − ā)rθ(xi)

where ā is the empirical mean of the ai’s. Note that with rθ(xi) = θ>xi, we have that the
above is linear in θ. We can then write approximate demographic parity as the empirical
covariance between A and R being small, i.e. with convex constraints of the form

−ε ≤ 1

N

N∑
n=1

(ai − ā)rθ(xi) ≤ ε.

Finding the optimal (empirical) classifier is then a convex optimization program in this
setting, which makes it tractable.

Remark 1 (On covariances and independence). Note that two random variables X and Y
that are independent must have 0 covariance. However, Cov(X, Y ) implies uncorrelation,
but not independence in general (unless the variables are jointly Gaussian). In turn, the
covariance constraints used in [ZVRG17] are a relaxation and a proxy for independence
here. Approximate independence of R and A implies low covariance Cov(R,A), but the space
of feasible solutions of the above optimization problem is strictly bigger and involves solutions
that are not independent across A and R.

Remark 2 (On the convexity of the problem). Note however that for more general functions
rθ(x), it may not be the case that the constraints we added are convex. Often, a difficulty
with more complex settings is that, while we can write the training procedure under fairness
constraints as an optimization program, this program may not be convex or tractable (even if
the loss function itself is convex!): fairness constraints can be non-tractable in the parameter
θ we are trying to recover. A lot of the work for fairness at training time is to find tractable
reformulations or relaxations of such hard problems.
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3 Equality of FPRs/FNRs via Post-Processing

This sub-section is based on the work of [HPS16]. Here, we want to look at post-processing.
I.e., we already have a score or model R = g(X) (g is our machine learning model, X are
the features, and R is the score assigned by the model, as before), and we want to find a
predictor R̃ that satisfies fairness, using only R, but not X. I.e., we want to post-process
the results R of our model to guarantee fairness. One of the benefits of such an approach
is that it works even if you only have black-box access to the model, and can only see its
predictions R.

Here, we look at equality of FPRs and FNRs in a classification setting; i.e., we imagine
that R, R̃, Y are binary, and we want to guarantee

Pr
[
R̃ = 1|A = 0, Y = 0

]
= Pr

[
R̃ = 1|A = 1, Y = 0

]
(equality of false positive rates)

Pr
[
R̃ = 1|A = 0, Y = 1

]
= Pr

[
R̃ = 1|A = 1, Y = 1

]
(equality of true positive rates)

For simplicity of notations, let
γa(R

′) = (Pr [R′ = 1|A = a, Y = 0] , P r [R′ = 1|A = a, Y = 1]). Here, note that we want
γ0(R̃) = γ1(R̃), where R̃ is post-processed/derived from R. [ZVRG17] shows the following
lemma, that makes it easier to search among the set of predictors R̃ that are derived from
R and satisfy our fairness constraints:

Lemma 1. A predictor R̃ is derived from R if and only if for all a ∈ {0, 1}, we have that
γa(R̃, R) is in the convex hull of

Pa(R) = {(0, 0), (1, 1), γa(R), γa(1−R)} .

Before proving this lemma, the reason this is nice is the following: being in the convex
hull of a set of a few points can simply be expressed as a set of linear constraints over γa(R̃)!
We can now find the best derived predictor by searching over the values of γ0(R̃) = γ1(R̃)
which belong in this convex hull Pa(R). I.e., if we have a loss function l(R̃, R) that tells us
how good our predictor is, we can solve the following optimization problem to find the best
derived predictor R̃ (best being the one that minimizes the loss) that is fair: it suffices to
solve the following linear program:

min
γa(R̃)

l(R̃, R)

s.t. γa(R̃) ∈ Pa(R)

γ0(R̃) = γ1(R̃)

Proof of Lemma 1. Fix a. Note that because we are in a binary setting with R and R̂
in {0, 1}, we can fully define R̃ as a function of R using only the 2 variables of the form
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Pr
[
R̃ = 1|R ∈ {0, 1}, A = a

]
. We then have, via conditioning, that

Pr
[
R̃ = 1|Y = 0, A = a

]
= Pr

[
R̃ = 1|R = 1, A = a

]
Pr [R = 1|Y = 0, A = a]

+ Pr
[
R̃ = 1|R = 0, A = a

]
Pr [R = 0|Y = 0, A = a]

= Pr
[
R̃ = 1|R = 1, A = a

]
Pr [R = 1|Y = 0, A = a]

+ Pr
[
R̃ = 1|R = 0, A = a

]
Pr [1−R = 1|Y = 0, A = a] .

We have a similar expression for Y = 1, which leads to

γa(R̃) = Pr
[
R̃ = 1|R = 1, A = a

]
γa(R)

+ Pr
[
R̃ = 1|R = 0, A = a

]
γa(1−R)

= pγa(R) + qγa(1−R).

Note here that (p, q) can be any value in [0, 1], and this covers exactly all the possible ways
of obtaining R̃ from R. This defines a polytope whose extreme points are reached when
p = 0, q = 0, p = 0, q = 1, p = 1, q = 0, p = 1, q = 1; this is exactly the four points defining
the convex hull.

4 A Heuristic for Calibration via Post-Processing: Platt

Scaling

Platt scaling is a heuristic to obtain calibration. The idea is to take an uncalibrated score
R, and post-process this score via logistic regression. Formally, given an uncalibrated score
R, Platt scaling aims to find a new score

S =
1

1 + exp(aR + b)
.

To do so, Platt scaling aims to find the best parameters a and b via logistic regression. I.e.,
we aim to find a and b that minimize the log-loss: i.e., if the target variable is Y , we aim to
find the parameters (a, b) that minimize

−E [Y logS + (1− Y ) log(1− S)] ,

or in practice the empirical loss

−
∑
i

yi logSi −
∑
i

(1− yi) log(1− Si),

where (Ri, yi) is the uncalibrated score and true label for agent i, and Si = 1
1+exp(aRi+b)

.
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The intuition behind Platt scaling is that logistic regression in general yields well-
calibrated models. This is often observed empirically, as shown in Figure 3 from Chapter 2
of the [BHN17] book: there we can see that in each group (defined by gender), the deciles of
the score closely match the actually probabilities of positive true labels/outcomes. We will
also formally prove a weaker version of “logistic regression ⇒ calibration” in HW3.

Figure 3: Results of Logistic Regression on the Adult Dataset. Calibration-by-group is
obtained as a result of logistic regression, without intervention.
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