
ISYE 8813: Algorithmic Foundations of Ethical ML Fall 2021

Lectures 20: Fairness and Causality
Lecturer: Juba Ziani

All of the fairness criteria we have studied so far are observational, and how the features
X, score R, sensitive attribute A, and target variable Y statistically relate to each other.
Most of these definitions have a few things going for them, in particular: i) they are easy
to formalize and can be stated simply in terms of X, Y,R,A, ii) in principle if you know
the joint distribution of these attributes (or have enough samples), you can check whether
they hold. However, these definitions have some limitations: observational definitions are
often unable to distinguish between two worlds that are structurally different (i.e., the causal
structure between the different parameters of the problem is different across both worlds),
but still map to the same joint distribution.

1 Some limitations of observational definitions through

examples

These examples are taken from the book [BHN17], and from Boaz Barak’s lecture notes at
https://windowsontheory.org/2021/06/11/causality-and-fairness/.

1.1 Berkeley admission data

The data above comes from study [BHO75] by Bickel et al., and looks at Berkeley admis-
sions in 1973 across a few departments. In 1973, among the applicants to Berkeley university,
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among 35 percent of women were admitted, versus 44 percent of men. This seems to suggest
that there was some unfairness across gender in admissions in the form of different accep-
tance rates for males and females, in favor of males. Looking at the 6 largest departments
at Berkeley, those insights still hold (44 percent admission rate for men versus only 30 for
women).

At the level of individual departments, however, the picture looks different. In 4 of the 6
biggest departments in Berkeley, the data shows that women were more likely to be admitted,
and the remaining 2 departments, the numbers are fairly close! So, what happened here? The
distributions of department that men and women applied to is very different: for example,
very few women applied to department A which has a high admission rate, but many more
women than men applied to departments C and E which have much lower admission rates!

Observing this, this is what the original study concluded: “The bias in the aggregated
data stems not from any pattern of discrimination on the part of admissions committees,
which seems quite fair on the whole, but apparently from prior screening at earlier levels of
the educational system. Women are shunted by their socialization and education toward fields
of graduate study that are generally more crowded, less productive of completed degrees, and
less well funded, and that frequently offer poorer professional employment prospects.” I.e.,
there was no wrongdoing by the departments, it’s rather a pipeline problem in which women
are socialized to choose different careers than men.

But this is not clear-cut inference, there could be many other explanations. Why did
women apply to more competitive departments in the first place?

• Maybe because the less competitive departments were unwelcoming of women at the
time.

• Maybe some departments were known for poorly treating women, and they decided
not to apply.

• Maybe the department did not advertise to women in the first place and discouraged
them from applying.

• etc.

There is no way, simply from the static, observational data we have, to figure out which
explanation is right. This causes difficulties when trying to come up with interventions for
fairness, as different explanations have different interventions! The first one requires changes
earlier in the education pipeline; the next two requires improving the treatment of women
with some of these departments; the last one requires targeting and reaching out to women
better.

I.e., one of the major shortcoming of statistical and observational data is that completely
different states of the world that requires different interventions for fairness may be statisti-
cally and observation-ally indistinguishable from each other, given only access to static data.
How to deal with these issues? We can i) make assumptions about what the state of the
world is, or ii) you can try to dynamically implement interventions to learn if and how they
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affect different groups and populations, and in turn which explanation of the world is more
likely. This ties back nicely to one of the first point we made in the fairness part of the class:
guaranteeing fairness depends on our view of the world and the assumptions we make about
the state of the world.

1.2 A more formal example of indistinguishability: Exercise, weight,
and heart disease

Imagine I want to understand the relationship between exercise, weight, and heart disease.
To do so, let us write X to variable that corresponds to exercising regularly, W to weight,
and H to heart disease. I could imagine there are several causal relationships between these
three attributes. Let us focus on a few possible causal relationships for now:

• If I exercise, I am less likely to be overweight and to have heart disease. But the fact
that I am overweight itself does not cause heart disease, both are symptoms of my lack
of exercise. This is the left example of Figure 1.

Figure 1: Different possible causal relationships between exercise, weight, and heart disease.

• The fact that I am overweight prevents me from exercising. Then, because I do not
exercise, I am more likely to develop a heart disease. This is the right example of
Figure 1.

• Because I do not exercise, I am overweight. Then, being overweight may lead to heart
disease.

• etc. (those are non-exhaustive examples)

In these figures, think of an arrow Z1 → Z2 denoting that Z1 has a direct effect on Z2. What
that means is that if pa(Z) is the set of parents of variable Z, Z can be entirely characterized
as a randomized function of pa(Z), without referring to other variables. Other variables may
still have an effect on and be correlated with Z, but only indirectly, through its parents.

Now, imagine that in scenario 1 (left), the data is generating according to the following
process:

• X ∼ B(1/2) (binomial with probability 1/2).
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• If X = 1, then W = 0; else, W ∼ B(1/2).

• If X = 1, then H = 0; else, H ∼ B(1/2).

Note the process is consistent with our causal graph. First, we draw X, then the value of X
affects both W and H.

In scenario 2 (right), imagine the process is the following:

• W ∼ B(1/4)

• If W = 1, then X = 0; else, X ∼ B(2/3).

• If X = 1, then H = 0; else, H ∼ B(1/2).

We first draw W , which then affects X, which then affects H.
Clearly, the two causal models that we are looking at here are different. What happens,

however, to the joint distribution of (W,X,H)? To do so, we compute this joint distribution
in the table below:

X W H Scenario 1 Scenario 2
0 0 0 1/8 1/8
1 0 0 1/2 1/2
0 1 0 1/8 1/8
0 0 1 1/8 1/8
1 1 0 1/4 1/4
1 0 1 0 0
0 1 1 1/8 1/8
1 1 1 0 0

We find that in both cases, the joint distribution of variables are identical! I.e., when
looking at statistical and observational definitions of fairness, the two worlds/scenarios above
are completely indistinguishable! I.e., when looking at fairness from the statistical point of
view, we are losing information and generality. This is a typical example of “correlation does
not imply causation”: the joint distribution of X,W,H tells you about how correlated they
are, but is not powerful enough to recover the full causation structure here.

2 Causal graphs and effects

The approach we will take here to address and discuss some of these issues is that of causality.
Instead of trying to understand properties of individuals or groups and trying to guarantee
fairness through only static, observational or distributional information, we will instead work
with causal graphs that describe of different parameters of the problem affect each other.
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2.1 Defining causal graphs

We have seen simple examples of such graphs in Section 1 of this lecture, but now let us
define them formally.

Definition 1 (Structural causal model). A structural causal model M is given by a set of
variables X1, . . . , Xd, and corresponding assignments of the form

Xi := fi(Pi, Ui), i = 1, . . . , d.

Here, Pi ⊂ {X1, . . . , Xd} is a subset of variables that we call the parents of Xi. The
random variables U1, . . . , Ud are called noise variables and are mutually independent, as well
as independent from the Xi’s.

Note that this kind of model aims to represent and formalize assumptions about the
causal structure between the different variables X1, . . . , Xd that we are interested in, and
how they affect each other:

• For each i, since Xi can be written entirely determined as a function of its parents in
Pi, these parents are the features that have a direct causal effect on Xi: changing some
of the parents changes Xi directly.

• Changing other features in the model may lead to a change in Xi, but only indirectly,
through, changing its parents Pi.

The random variable U1, . . . , Ud are here to represent that Xi can be a randomized func-
tion of its parents, as in the example of Section 1.2. They can be seen as external/exogenous
factors that influence the system.

A structural causal model can be represented by a causal graph:

Definition 2 (Causal graph). The graph corresponding to the causal structural model {(Xi, fi)}
is a directed graph that has a node for each variable Xi, and each node Xi has an incoming
edge from all of its parents Pi. We call this graph the causal graph corresponding to the
structural causal model.

For example, we have seen such simple causal graphs in Section 1.2., Figure 1.

2.2 Some common graph structures

Here, we will look at a few common graph structures. These graph structures are going to
be particularly important in terms of understand the causal relationships between different
variables, how they can affect each other directly or indirectly, and how confounding effects
can arise. The reason we want to do so, in the space of fairness, is that we want to understand
how bias or unfairness in one variable is going to affect other variables in our problem, and
how fair our decisions are going to be.
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Forks A fork is a node Z that has outgoing edges to two other variables X and Y : i.e., Z is
a common cause of X and Y , as seen in Figure 2. The reason forks are an important special
structure is because they have a confounding effect (in which there can be correlation without
causation) on X and Y . Note here that X does not have a causal effect on Y , whether it be
direct of indirect. However, X and Y are correlated with each other, simply because they are
both consequences of/informative about Z! Conditioning on different values of X without
conditioning on Z will lead to different distributions for Y .

Figure 2: A fork

This will be important later on, for the following reason: confounding leads to disagree-
ments between i) conditioning on a random variable and ii) intervening on that random
variable and changing it. Here is the reason, in the example above:

• Conditioning on X affects the joint distribution of Z, Y . This is because conditioning
on X gives me information about what Z is (since Z causes X), and in turn on what
Y is.

• However, intervening to change the value of X does not change the value of Z, as Z is
not a function of X! In turn, the value of Y is also unchanged.

This distinction will be important later on when trying to understand the effect of a given
variable on another.

Mediators Mediators are simpler situations in which such confounding effects may not
arise. A mediator is a node Z such that Z lies on a directed path from X to Y ; see Figure
3 for an example of a situation in which Z is a mediator.

Figure 3: A mediator
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In this case, we have the causal path X → Z → Y . There, as before, X and Y are
correlated though Z. However, it is the case that X is a cause of Y , because X now causes
Y through Z! So, here, Z does not have a counfounding effect across X and Y .

Colliders In a collider, the collider node Z is caused by both X and Y , as seen in Figure
4. Here, there is no confounding effects between X and Y , once again: X and Y are not
correlated which each other, nor to they have a causal relationship. If I condition on X, I
learn nothing more about Y than what I already knew through Z, and vice-versa.

Figure 4: A collider

However, colliders have an interesting effect: if I condition on the collider Z itself, I am
now introducing correlation between X and Y ! Imagine Z = 1 is being admitted to the
hospital, and X = 1 is having meningitis, and Y = 1 is having a broken bone. Conditional
on Z = 1, I now learn that observing that one agent has meningitis X = 1 makes the
likelihood that he has a bone fracture Y = 1 much smaller, as it is unlikely someone was
admitted for both having meningitis and a broken bone at the same time.

3 Interventions and Causal Effects

The “do” operator Given a causal model M , we can take any assignment of the form
X := F (P,U), and replace it by another assignment. For example, we could assign X a
constant value x, i.e. do X := x. Let us denote the resulting model M ′ = M(X := x).
This assignment operator is called to do-operator, and another notation for it is to write
do(X := x) for the operation of assigning x to X.

Graphically, this operation corresponds to eliminating all incoming edges to the node X,
and fixing the value of that node, as seen in Figure 5. Note that this can be different from
conditioning on X = x, when counfounding effects are present.

Causal Effect The causal effect of an action X := x on a variable Y refers to all the ways
in which setting X to any possible value x affects the distribution of Y . Here, let us look at
this in a simple binary setting in which X ∈ {0, 1}. Then we are interested in a quantity of
the form

EM [X:=1] [Y ]− EM [X:=0] [Y ] ,
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Figure 5: The do operator

that we call the average treatment effect. This is a measure of causality in the sense that it
tells us how much changing X from 0 to 1 affects Y .

The issue here comes again from confounding. If we are trying to compute such effects
without interventions, just by looking at conditional probabilities and conditioning on some-
one’s attributes to see their effects, you might detect correlation that does not come from
causation.

Avoiding confounding effects There are several possible ways to do so:

• One can run randomized trials with an control and a treatment group. We can then di-
rectly implement the do operator/an intervention by changing the value of the variable
of interest in the treatment group, compared to the control group. But this has limita-
tions: once again, you cannot change someone’s race, so not all variables are ones you
can even physically intervene. There may also be ethical or legal reasons why some
interventions are in possible. So, sometimes, we are constrained to use conditional
statements rather than actual interventions/do operators.

• Let’s say we are trying to see the effect of X on Y , and see if one of the paths from X
to Y introduces confounding effects. While this looks like this may be complicated, it
actually has been show in the causality literature [Pea09] that there is a simple criterion
for confounding effects to arise, the backdoor criterion. I am not going to get into the
details of this criterion here, and suggest that you read [Pea09] more carefully if you
are interested! Basically this characterizes, when we are conditioning on a (Set of)
random variables, whenever these random variables create a fork or collider situation
with respect to X and Y .

This is more of away to detect confounding rather than correct for it.

• Another approach is to note that, conditional on its parents nodes pa(Xi), Xi is inde-
pendent of all other nodes. This is because we can write

Xi = f(pa(Xi), {Ui}),

implying that the distribution of Xi conditional on pa(Xi) = ~p is given by

Pr [Xi = xi | pa(Xi) = ~p] = Pr [f(~p, {Ui}) = xi] ;
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conditional independence then follows from the fact that the Ui’s are independent of
the Xi’s. So, we can write the following adjustment formula:

Pr [Y = y|do(X := x)] =
∑
z

Pr [Y = y|X = x, pa(X) = ~p] Pr [pa(X) = ~p] .

This is exactly the idea of controlling for a variable; we estimate the effect of X on Y
by controlling for/taking into account all of the possible values ~p of X’s parents. This
guarantees then that the effect we observe comes from X itself, and not from variables
that are confounded with X through its parents.

One weakness of this approach is that it breaks if there is unobserved confounding,
due to the fact that some unobserved variables that have not been taken into account
in the model introduce confounding.

4 Using Causal Graphs for Discrimination Analysis

With causal graphs, we have a way to formalize the effect of conditioning or intervening on
a variable on other variables in the model. This will be useful with respect to fairness: we
can see the effect that a sensitive attribute such as gender or race has on the other variables
of the model, and on our decision rule.

Let us go back to the Berkeley example from last lecture. Let A be the sensitive attribute,
gender; Z the department choice; and Y , the admission decision/classifier. Let us imagine
that we have the following causal relationship, for the sake of example:

Figure 6: A possible causal graph for Berkeley admissions

So here, we assume that someone’s gender A could possibly have a direct effect on
admission, and there is an arrow from A to Y. But we also consider’s the argument from
Bickel in his study here: A might affect Y through the choice of department, in the sense
that different departments are differently selective, and that gender affects the choice of
department.

We can use this model to test out and put pressure on Bickel’s argument, that there is
no direct effect of sex A on admissions decisions Y, and that the reason for the data is the
indirect effect of department choice, which should not be counted as discrimination.

4.1 Direct Effects

Here, we are interested in the direct effect of A on Y . Ideally, we want to hold Z the
department choice constant to see the effect of A on Y without taking the indirect effect
through Z into account.
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What we are working with is observational data that tells us what someone’s department
was, their gender, and the admission decision. We cannot implement a do intervention here,
so we have to work with conditioning on the variables instead. So we want to see the effect
of A on Y conditional on Z = z for some z.

In the current graph, this is fine. Z act as a mediator, and conditioning on Z does not
introduce correlation between A and Y . But imagine the alternative situation described in
the following figure:

Figure 7: An alternative causal graph for Berkeley admissions

Here, we added a new variable R (say, the state of residence) that has an effect on
the department you apply to and admission decisions (the school may favor candidates from
within the state for example). Now Z becomes a collider between A and R, and conditioning
on such a collider means that this may not be the same as holding the collider fix/performing
do(Z := z). Note that this would then break Bickel’s argument: it may be now that the
attribute A, conditional on Z, also encodes information about R, in which case we are not
properly separating the effect of A from that of R. Now, it may be that there is actually a
direct impact of A on Y , but we are not observing it because of the correlation with R.

Regardless, direct effect is generally a restrictive and imperfect measure of discrimination
on its own, because it does not detect any form of discrimination by proxy. For example, I
could have an alternative scenario in which Z is someone’s research statement. By holding
Z fixed, I am looking at the direct effect of A on Y independently of the research statement.
It might very well be that the direct effect here is independent of gender, in which there is no
direct discrimination; yet, I could still introduce discrimination by using someone’s research
statement Z to predict their gender! This is why we also need to look at indirect effects.

4.2 Indirect Effects

It could be that here the picture is a bit more complex. In fact, we could have the following:
Here, we let F could denote a few different things, but they could be: how much the

Figure 8: A more detailed causal graph for Berkeley admissions

department encourages different genders to apply; how much of a track record of hostility
against women the department has; etc.
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So now, if we accept Bickel’s argument that this path is non-discriminatory, this means
that we are ruling out all of these scenarios and deeming them impossible. Bickel claims
that this path was non-discriminatory because it was indirect, but in the two new scenarios
above that include F, they clearly are!

This tells you that solving fairness, even with causal models, is not purely a technical
matter. This cannot be resolved without some form of knowledge of the specific matter
at hand and some subjectivity. The same path could either correspond to discrimination,
or the absence of discrimination. Causal modelling can expose such issues, but not always
necessarily solve them.

Estimating indirect effects From a technical point of view, estimating indirect effects
is not always possible given our current language and operations. In the current example,
it would require to somehow disable direct influence: here, that would be disabling the edge
between A and Y without disabling the indirect path. There is no way to do this with just
our do-operation: we can neither hold A nor Y fixed to estimate the effect of A and Y , but
we would need to do so to deactivate the direct path between A and Y .

Why do we care about understanding path-specific effects Let me look at university
admissions, A is a sensitive attribute like socio-economic status, and Y is the admission
decision. Now, I observe that changing A changes Y . This could mean several things:

• A influenced Y through a direct path A→ Y . This means that we make different ad-
missions decisions for different people solely based on their socio-economic status (and
not how the socio-economic status affects other attributes that are actually relevant to
admission decisions).

• A influenced Y though some path A → X → Y , where X is a student’s actual
qualification level. Then we may argue that such a path is non-discriminatory: we
hire students based on their qualification level, and it may very well be that we treat
different socio-economic status differently but this is because of the fact that they have
different qualifications, and we are fair in the sense that we are admitting qualified
students.

• A influenced Y through some path A → X → Y , where X is whether a student can
afford to take the SAT repeatedly. Then this can be seen as discriminatory: we are
saying that students of a lower socio-economic status are admitted less often because
they don’t get to “inflate” their SAT scores (by taking the test several times until they
get their desired score) as much as richer students, at everything else (and in particular
maybe qualification level) equal.

(Note that I am not trying to claim that any of these reasons are the reason we see inequalities
in college admission in real life and am making no personal judgment here. Those are just
examples of why different paths may be seen as more or less discriminatory)
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5 Counterfactual fairness

We will see how counterfactuals help us estimate path-specific effects, in a way our causal
framework from before cannot. But before this, let us try to understand the following
question: what is a counterfactual exactly?

Informally, the idea of counterfactuals is to answer the following question:“what would
happened if I changed my model in this way? Intervened in this way? Take this action” The
reason we want to run such counterfactuals here is that they can be important to understand
fairness. I.e., we want to understand questions of the form “Had I changed my gender, would
I have had been more likely to be admitted to college?”

Naively, it seems like we already know how to solve this from the previous section, and
counterfactuals bring nothing new to the table. It seems that all I have to do is run the
operation do(X := x) to see how changing a given variable X changes the outcome of interest
in the counterfactual, right? It turns out that this is not true; understanding counterfactuals
is often not as simple as doing a single substitution in our causal model.

5.1 Example

First, we start with an example of why doing a do operation may not be enough to run a
counterfactual. This example is once again taken from [BHN17].

Every day, I have to decide between two routes to work, X = 0 and X = 1. On bad
traffics days, indicated by the exogenous noise variable U being equal to 1, both routes are
bad. On a good day however (U = 0), the traffic on either route is good, unless there was
an accident. Let’s imagine here U ∼ B(1/2) be the distribution of good versus bad days.
Let U0, U1 ∼ B(1/2) whether an accident occurs on the route 0, respectively 1.

Now, imagine our strategy right now is to take either route at random (ignoring traffic
information provided by your GPS, for example. This is 1990 and you still have to use maps
to find your way). So, X ∼ B(1/2). Now let Y be the variable that tells us whether the
traffic on the route that I chose is good or bad; i.e.,

Y = X ·maxU,U1 + (1−X) ·maxU,U0.

I.e., if I choose route X = 1, the traffic is bad iff either U = 1 or U1 = 1 hence maxU,U1 = 1.
In that case, Y = 1×1+(1−1)×maxU,U0 = 1. If I choose route X = 0, the traffic is bad iff
either U = 1 or U0 = 1, hence maxU,U0 = 1. In that case, Y = 0×maxU,U1+(1−0)×1 = 1.

Anyway, note that since the U ’s are exogenous noise variables, our causal graph here is
given by:

Now, one morning, I have X = 1 and I observe bad traffic Y = 1. I want to run the
following counterfactual: “had I taken the other route today, would I have been better off?”.
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Suppose I want to answer this question by doing the most naive thing I can think of.
Well, then, maybe I just need to compute the likelihood of Y = 0 after performing the
do-operation do(X := 0), i.e. PrM [X:=0](Y = 0).

Pr
M [X:=0]

(Y = 0) = Pr[U = 0 ∩ U0 = 0] =
1

2
· 1

2
=

1

4
,

where the second-to-last step follows from the fact that U and U0 are independent. All right,
we are done, right?

Well, in fact, we are not. The calculation above ignores the fact that we observed and
already known that X = 1 and Y = 1. But, this restricts the possible distributions of
U and U1! In particular, it could not have been the case that both U = 0 and U1 = 0,
otherwise I would have had Y = 0! So, only the following settings are still possible for the
noise on route 1: U = 0, U1 = 1, U = 1, U1 = 0, and U = 1, U1 = 1. Since each of these
three cases is equally likely (remember each of those have probability 1/4), I know that
conditional on X = 1 and Y = 1, they are now equally likely but with probability 1/3. In
turn, U ′ = (U |(X = Y = 1) = 1 now with probability 2/3 instead of 1/2!

Now we can re-do the calculations with the proper probability distribution over U ; i.e.,
the one that is conditional on the outcome X = Y = 1 that I observed today. The calculation
now becomes

Pr
M [X:=0]

(Y = 0) =
1

3
· 1

2
=

1

6
.

To summarize, taking into account what we learned from our observation (X, Y ) on the
state of the noise variables decreased the probability of no traffic if I were to choose the other
route. Here is the intuitive reason: if the traffic was bad today, I am more likely to believe
that this was because of too many cars on the road (the event U = 0 is ruled out part of the
time and becomes less likely that 1/2), in which case the other road would also be affected.

The result we just calculated is the actual counterfactual that we want to compute, which
takes into account what I have observed about the hidden noise in the state of the world. The
distinction with the first case is what this first case is not a counterfactual, but rather tells
us “what would happen tomorrow if I chose the other road instead?” – in that case, you
have no information about the noise variables, as their realizations change everyday. The
counterfactual looks at what would have happened today, given the additional information
that we obtained after the fact.

5.2 The general recipe

So, now we have to be careful about how our observations about the state of the variables
that explicitly appear in our causal graph affect the unseen noise variables. We have seen
above how to do so in a single example, but let us generalize this approach. We only need
to implement the three following steps:

Definition 3 (Counterfactuals in causal models). Given a structural causal model M , an
observed event E, an action X := x, and target variable Y , we define the counterfactual
YX:=x(E) by the following three step procedure:
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1. Abduction: Adjust noise variables to be consistent with the observed events. Formally,
compute the distribution U ′ that results from conditioning U on the observed event E.

2. Action: Perform a do-intervention on X in model M , resulting into new model M ′ =
M [X := x].

3. Prediction: Compute the target counterfactual YX:=x(E) by working on new model
M ′ = M [X := x], with distribution of noise U ′ obtained from taking the observation E
into account.

This defines what a counterfactual is in causal models. Here, note that YX:=x(E) corre-
sponds to the following counterfactual question: “what would Y be if I force X = x, given
that I have observed and know we are in event/case E?”

A last note on counterfactuals: running a counterfactual depends heavily on the dis-
tribution of noise variables U ’s. These variables, however, do not appear directly in the
causal graph. This means that one can construct two different causal models with different
counterfactuals, but that correspond to the same causal graph. Here graph 6= model.

5.3 Counterfactuals and discrimination analysis

Remember that earlier in this lecture, we talked about trying to understand how to decom-
pose a causal effect into path-specific effects. A reason to do so is that it may be useful to
determine whether discrimination occurred: some paths may be seen as discriminatory while
others may not, and which paths specifically affect the outcome when changing a sensitive
attribute can give you some insights as to whether discrimination occurred.

Imagine we have the following figure, and we want to understand the effect of X on Y :
Here, there are two paths that we can look at: the direct path X → Y , and the indirect

path X → Z → Y . Remember that earlier in this lecture, we already saw a simple way to
look at the direct effect of X on Y ; one way to do so is just change the value of X while
holding Z = z constant. I.e., we can write the direct effect as:

E [Y |do(X := 1, Z := z)]− E [Y |do(X := 0, Z := z)] .

We can also think of this direct effect in terms of counterfactuals, i.e. as:

E [YX:=1,Z:=z − YX:=0,Z:=z] ,

where the expectation is taken with respect to the noise variables U . This is what we call
the controlled direct effect, since we set the mediating variable Z at a fixed value and we are
controlling for Z. We can also look at the natural direct effect, if instead of letting Z = z, we
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let Z follow the distribution that it was following before I changed X, i.e. the distribution
it is following in the current state of the world:

E [YX:=1,Z:=ZX:=0
− YX:=0,Z:=ZX:=0

] .

This is nice, because a natural extension of this will allow us to now talk about natural
indirect effects:

E [YX:=0,Z:=ZX:=1
− YX:=0,Z:=ZX:=0

] .

What is going on here? Well:

1. We are not changing the value of X. We are fixing X to always stay at 0. So we are
not taking into account the direct effect of X on Y , since here X is held constant and
so the path X → Y is held constant.

2. However, we change the distribution of Z as if we had changed X. Now, the edge
Z → Y is acting exactly as if we had changed X and we were looking at X → Z → Y .
So, we take the effect of that indirect path into account.

But so here, exactly, this means that we are only taking indirect effects into account, which
is what we wanted!

Remark 1. The reason we can do this now, but could not do this from our simple causal
language from Section 4, is that running these indirect effects require being able to manipulate
the distribution of the random variables. This means that we need to explicitly take the
effect of our noise variables U into account, which is why we introduced the counterfactuals
in the first place.

Remark 2. Here, we are looking at simple, toy example. But in principle, such an approach
can be extended to all sort of path-specific effects in all sorts of causal graphs.

Counterfactual discrimination criteria Now, we can start defining some of our statis-
tical notions of fairness and discrimination, but with the additional help of the language of
causal graphs and counterfactuals. Beyond path analysis and detecting discrimination, we
are now explicitly defining fairness criteria on causal models.

Let us go back to the formal setup of our statistical fairness lectures. We have features
X, a sensitive attribute A, an outcome variable Y , and a decision or scoring rule R. One
natural criterion to look at is the following: for every possible demographic described by the
event {X := x,A := a}, and every possible alternative way to set the sensitive attribute
A = a′, we want

RA:=a(X := x,A := a) = RA:=a′(X := x,A := a),

i.e. they follow the same distribution. We can call this counterfactual demographic parity.
Here, what we are saying is that given that I have observed today that your sensitive attribute
is a and you features are x, I guarantee you that if you had instead had sensitive attribute
a′, you would have faced the same outcomes! So, we are not discriminating based on this
attribute.
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Remark 3. For simplicity here, I am just looking at demographic parity. But we can simi-
larly define similar analogues for other statistical fairness criteria.
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