
Non-Exploitable Protocols for Repeated Cake Cutting

Omer Tamuz and Shai Vardi and Juba Ziani
{tamuz,svardi,jziani}@caltech.edu
California Institute of Technology,

1200 E California Blvd, Pasadena, CA 91125

Abstract

We introduce the notion of exploitability in cut-and-choose
protocols for repeated cake cutting. If a cut-and-choose proto-
col is repeated, the cutter can possibly gain information about
the chooser from her previous actions, and exploit this infor-
mation for her own gain, at the expense of the chooser. We de-
fine a generalization of cut-and-choose protocols—forced-cut
protocols—in which some cuts are made exogenously while
others are made by the cutter, and show that there exist non-
exploitable forced-cut protocols that use a small number of
cuts per day: When the cake has at least as many dimen-
sions as days, we show a protocol that uses a single cut per
day. When the cake is 1-dimensional, we show an adaptive
non-exploitable protocol that uses 3 cuts per day, and a non-
adaptive protocol that uses n cuts per day (where n is the
number of days). In contrast, we show that no non-adaptive
non-exploitable forced-cut protocol can use a constant num-
ber of cuts per day. Finally, we show that if the cake is at
least 2-dimensional, there is a non-adaptive non-exploitable
protocol that uses 3 cuts per day.

1 Introduction
The problem of cake cutting or fair division concerns the
splitting of a divisible good among a number of agents, with-
out transfers. This problem has important applications in
many fields, including multiple agent systems (Chen et al.
2010; Balkanski et al. 2014), and has attracted the attention
of mathematicians (Knaster 1944; Neyman 1946; Dubins
and Spanier 1961), computer scientists (Even and Paz 1984;
Edmonds and Pruhs 2006), political scientists (Brams and
Taylor 1996) and economists (Steinhaus 1948; Varian 1974)
for many decades.

Consider a heterogeneous divisible good (i.e., a cake),
represented by the interval (0, 1). There are two strategic
agents, each with a private (additive, non-atomic) valuation
function vi. The classical goal in the cake cutting literature
is to design a protocol that divides the cake fairly between
the two agents. There are several common definitions of fair-
ness, including proportionality (each agent’s utility from her
piece is at least half of her utility for the entire cake) and
envy-freeness (neither agent prefers the other agent’s piece

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to her own). When there are two players, envy-freeness im-
plies proportionality (see, e.g., Procaccia 2016). The follow-
ing well known cut-and-choose protocol is envy-free.
Protocol 1.1. One agent cuts the cake into two pieces, X
and X . The other agent chooses one of {X,X}. The agent
that cut the cake receives the remaining piece.

We make the standard assumption of the cake cutting lit-
erature that the agents use maximin solutions: they maxi-
mize their minimum utility over all possible actions of the
others (Wald 1945; 1949; Brams, Jones, and Klamler 2006;
Sinn 2012). It follows that in Protocol 1.1 the agent that cuts
the cake (henceforth the cutter) will cut the cake into two
pieces of equal value to her, and the agent that chooses (the
chooser) will choose a piece that is worth at least as much as
its complement. This is also sometimes referred to as risk-
aversion.

We consider now the following scenario. On each of n
days the chooser is approached by a different cutter that has
a divisible good (or cake). The chooser has the same valua-
tion for all cakes, but each cutter may have a different val-
uation. Each cutter cuts the cake, and the chooser chooses
the piece she prefers. At first glance, it seems like execut-
ing Protocol 1.1 every day is a good idea: it is envy-free on
every day. Indeed, if the cutters cannot observe the previous
choices made by the chooser, then all of the desirable prop-
erties of Protocol 1.1 carry over to the dynamic case. But
what if the cutters can observe the previous choices of the
chooser?

Say that on the first day the first cutter cuts the cake down
the middle into a = (0, 1/2) and b = (1/2, 1), and that the
chooser chooses a. If the second cutter values b at strictly
more than 1/2, she can cut the cake in the same place,
knowing the chooser will choose a again. Thus the cutter
no longer cuts the cake into two pieces that are equally valu-
able to her, and receives a utility strictly greater than 1/2.
In other words, the cutter is able the exploit the information
she learns about the chooser. If the first k − 1 cutters make
different cuts, the kth cutter may have quite a bit of informa-
tion that she can exploit. Thus, in this dynamic setting, it is
no longer true that the cutter always cuts the cake into two
equally valuable pieces, and always gets utility 1/2.

We note that we do not constrain the chooser to always
choose the larger of the two pieces offered to her. Indeed, it
may be reasonable for the chooser to try to trick the cutter

into thinking she has a different utility function (see Exam-
ple A.1). However, as our goal will be to design protocols in
which the cutter cannot exploit the chooser, the chooser will
have no incentive to choose a smaller piece.

We develop cut-and-choose protocols in which the cutter
is restricted, in her choice of cuts, while still having enough
options to always be able to cut the cake into two pieces of
equal value. A protocol is non-exploitable if—informally—
the cutter, for any choice of allowed division of the cake, can
never be sure which piece the chooser will choose, given
her observations of the chooser’s past actions. Our goal in
this paper is to develop and analyze simple non-exploitable,
envy-free dynamic cut-and-choose protocols. In addition to
non-exploitability being a desirable characteristic in and of
itself, it implies that the agents behavior is simple, as in
Protocol 1.1: in equilibrium, the cutter cuts the cake into
two pieces that are each worth 1/2 to her, and the chooser
chooses the “larger” piece. This is advantageous, as being
able to predict and analyze agents’ behavior is important
in strategic environments, e.g., (Wald 1949; Fishburn 1970;
Gilboa and Schmeidler 1989).

We concentrate on a family of cut-and-choose protocols
that we call forced-cut protocols. In these, there are zero or
more exogenous forced cuts that partition the cake into seg-
ments on each day, and the cutter is required to divide each
segment into two slices. The chooser then chooses between
two sets of slices; each set of slices is called a piece of cake.
We show that this family of protocols is sufficient in order to
obtain non-exploitable protocols that are envy-free and use
few cuts.

Due to space limitations, some discussions and remarks
are deferred to the full version of the paper.

1.1 Results
Our first result shows that if the cake is not one dimensional,
but instead has at least as many dimensions as there are days,
there is a non-exploitable protocol that uses the minimum
possible number of cuts—a single cut per day.

Theorem 1.2. There is a non-adaptive, non-exploitable,
envy-free n-day forced-cut protocol for k-dimensional con-
vex sets (where k ≥ n) that uses n cuts.

For a one dimensional cake, we give an adaptive protocol
that uses a linear number of forced cuts.

Theorem 1.3. There is an adaptive, non-exploitable, envy-
free n-day forced-cut protocol for the interval (0, 1) that
uses 3n cuts.

Our most technical result shows that there is no forced-
cut single-dimensional non-exploitable protocol that uses a
linear number of cuts.

Theorem 1.4. Let c > 0 be a constant, and let P be a non-
adaptive, envy-free forced-cut protocol that uses at most cn
cuts. Then there exists a constant n0 such that for every n >
n0, P is exploitable.

Nevertheless, we give a non-adaptive non-exploitable pro-
tocol that uses a quadratic number of cuts.

Theorem 1.5. There is a non-adaptive, non-exploitable,
envy-free n-day forced-cut protocol for the interval (0, 1)
that uses Θ(n2) cuts.

Finally, show that adding a single dimension is enough to
overcome the lower bound of Theorem 1.4.

Theorem 1.6. There is a non-adaptive non-exploitable n-
day forced-cut protocol for the set (0, 1) × (0, 1) that uses
3n cuts.

1.2 Related work
There is a vast literature on cake-cutting dating back to
the first half of the previous century e.g, (Knaster 1944;
Neyman 1946; Steinhaus 1948; Dubins and Spanier 1961;
Varian 1974; Stromquist 1980; Even and Paz 1984; Brams
and Taylor 1996; Edmonds and Pruhs 2006; Chen et al.
2010; Balkanski et al. 2014). For an introduction to cake-
cutting, we refer the reader to (Robertson and Webb 1998;
Procaccia 2016). We focus here on work that is related to the
major themes of this paper.

Repeated cake-cutting. The work most related to ours is
the paper of (Delgosha and Gohari 2012), who consider the
problem of understanding how agents behave when engag-
ing in classical protocols, when partial information about the
other agent’s utility can be revealed. They consider several
ways information can be revealed: the cutter can spy on the
chooser; the chooser can voluntarily give information about
her utility to the cutter if it is beneficial to her; the cutter
and chooser repeatedly cut and choose from identical cakes
with identical utilities, and only gain information about each
other’s utilities by looking at the history of actions taken by
the players. The last variant is very similar to our setting;
the main difference being they only analyze the existing cut-
and-choose protocol if it is played repeatedly; they do not
design new protocols. Additional differences are that in their
setting, the utility functions are sampled from some known
probability distribution (we perform a worst-case analysis),
and the cutter has exactly two options (compared to an infi-
nite amount, as in our setting). They show that a particular
set of actions, which include the chooser acting myopically,
leads to a Trembling Hand Perfect Equilibrium.

Cut complexity. There has been much work on the cut
complexity of protocols - how many cuts are necessary
to achieve envy-free, proportional and/or equitable alloca-
tions? (Steinhaus 1948) introduced the last diminisher pro-
cedure, which uses O(n2) cuts to obtain a proportional di-
vision, where n is the number of agents. (Even and Paz
1984) gave a deterministic protocol that usesO(n log n) cuts
and (Edmonds and Pruhs 2006) showed that this is tight.
(Robertson and Webb 1998) propose a more formal model
for the query complexity of cake cutting algorithms (the al-
gorithm of (Even and Paz 1984) falls within this model, as
does the bound of (Edmonds and Pruhs 2006)), in which
there are two types of queries: (I) Given a value α ∈ (0, 1),
an agent cuts the cake so that the resulting piece is worth α to
her; (II) An agent says how much a piece previously cut by

the protocol is worth to her. This model has become the stan-
dard model for investigating the complexity of cake-cutting,
e.g., (Edmonds and Pruhs 2006; Woeginger and Sgall 2007;
Procaccia 2009; Aziz and Mackenzie 2016a; 2016b; Procac-
cia and Wang 2017); however it is not relevant to our setting
as it assumes that the agents are not strategic and reply to
queries truthfully.

Exploitability, truthfulness and privacy. The reader that
is familiar with the literature on cake-cutting will likely
make a connection between the notion of exploitability and
truthfulness. Truthfulness (sometimes called strategyproof-
ness or incentive-compatibility), e.g., (Brams, Jones, and
Klamler 2006; Chen et al. 2010; Mossel and Tamuz 2010)
is when the agents are incentivized to reveal their true pref-
erences. The notion of truthfulness makes sense when there
is a centralized mechanism to which the agents reveal their
preferences. One of the advantages afforded by cut-and-
choose protocols is that the agents do not need to reveal their
entire utility functions. Revealing the function in its entirety
is not always computationally or indeed even information-
theoretically possible, and does not preserve privacy.

The notion of exploitability is also related to privacy.
Clearly, if the chooser’s utility function remains completely
private, no protocol is exploitable. However, it is inevitable
that some information leaks in a repeated game (barring the
trivial case in which the chooser acts independently of her
valuation). An advantage of cut-and-choose protocols over
many others, e.g., (Even and Paz 1984; Brams, Jones, and
Klamler 2006; Chen et al. 2010; Mossel and Tamuz 2010;
Balkanski et al. 2014) is that very little information is re-
vealed about the players’ utilities. (Brams, Jones, and Klam-
ler 2006) remark upon this extensively, although their ap-
proach to this notion is slightly less rigorous than ours.

Adaptivity vs. non-adaptivity. Recently there has been a
surge of work in the computer science community on the
adaptivity gap in stochastic settings algorithms, e.g., (Gupta,
Nagarajan, and Singla 2017; Blum et al. 2015) – how much
can be gained by allowing the algorithm to adapt to the be-
havior or strategies of the players. Clearly, non-adaptive pro-
tocols are simpler to describe and implement, as they can
simply be described upfront, while adaptive protocols can be
strictly stronger (Gupta, Nagarajan, and Singla 2017). When
designing a protocol or algorithm, it is useful to know the
tradeoff in order to decide whether to design an adaptive or
non-adaptive protocol.

Multiple dimensions. Most of the work on cake-cutting
focuses on single dimensional cakes. (Segal-Halevi et al.
2017) explain this concisely “This ... is usually justified by
the reasoning that higher-dimensional settings can always
be projected onto one dimension, and hence fairness in one
dimension implies fairness in higher dimensions.” Our re-
sults show that the complexity of protocols can depend on
the number of dimensions of the cake.

There has been some recent work on multiple-
dimensional cakes, mostly on 2-dimensional cakes,

e.g., (Iyer and Huhns 2009; Segal-Halevi et al. 2017).
(Segal-Halevi et al. 2017) consider the problem of dividing
2-dimensional cakes when the shape of the allocated pieces
is restricted; they give upper and lower bounds on achievable
levels of proportionality that can be guaranteed for different
shapes of pieces. We note that there is some literature on
pie-cutting, e.g., (Barbanel, Brams, and Stromquist 2009),
but this is still a one-dimensional object, albeit a circle
instead of a line.

Dynamic fair division. In recent years, there has been
a growing interest in dynamic (or online) resource alloca-
tion. (Walsh 2011) considers the cake-cutting problem in
which players arrive and depart online, and must be allo-
cated a slice before they depart. (Friedman, Psomas, and
Vardi 2015; 2017) consider the scenario in which a sin-
gle resource needs to be divided between arriving players
such that there are few reallocations when an agent arrives.
(Segal-Halevi 2016) considers a dynamic reallocation set-
ting with some agents that are present from the start some
newly arrived agents.

2 Model and preliminaries
A k-dimensional cake C is a compact convex subset of Rk.
A valuation (or utility) function u is a Borel probability
measure on C. We assume that valuation functions are non-
atomic, i.e., they assign zero measure to singletons, and fur-
thermore assign measure zero to sets with empty interior
(e.g., lower dimensional sets). Equivalently, valuations are
absolutely continuous with respect to the Lebesgue measure.

A cut of a cake is a (k−1)-dimensional hyperplane bisect-
ing the cake. A finite set of cuts of a cake defines a partition
of the cake into finitely many slices in the obvious way.1 A
piece of a cake is a union of slices. A division D = (X,X)
of the cake is a partition of the cake into a piece X and its
complement.

We consider a setting with n identical copies (C1, . . . , Cn)
of a cake C. One player—the chooser—remains constant
across days, and there is a (possibly) different cutter on each
day.

In a repeated cut and choose protocol, on each day t the
cutter selects a division Dt = (Xt, Xt) of Ct; the chooser
selects one of the two pieces, receives that piece, and the
cutter receives the other. Each player’s utility for that day is
her valuation for the piece she receives. The cutter is con-
strained to choose a division out of a set P t that depends on
the day t, and possibly also on the previous choices made by
the players.

The complexity of a protocol P = (P 1, . . . , Pn) is the
maximal total number of cuts needed to generate any se-
quence of legal divisions (D1, . . . , Dn) ∈ P .

A strategy of the cutter is an assignment, on each day,
of a division Dt ∈ P t, depending possibly on the previous
choices made by the players. A strategy of the chooser is
a function that, depending on the division offered on each

1We can arbitrarily assign elements of the (lower-dimensional)
cuts to the slices. This will not affect the slices’ valuations, since
the cuts themselves always have zero value.

day, and possibly also on previous history, determines her
choices of piece. We say that the chooser is myopic if her
strategy is, on each day t, to choose whichever of (Xt, Xt)
has higher valuation for her. We assume that in case of in-
difference the chooser chooses consistently, so that if she is
offered the same division on a subsequent day, she makes
the same choice.

We say that a protocol is non-exploitable (by the cutter) if
for every strategy of the cutter there exists some valuation u
of the chooser, such that, assuming that the chooser is my-
opic, the cutter receives on each day a piece that she values
by at most 1/2. Equivalently, and perhaps more intuitively,
the cutter, regardless of the strategy she chooses, can never
be sure which piece the (myopic) chooser will choose, given
her observations of the chooser’s past actions. That is, on
each day t, for any history occurring on the previous days,
and any choice of divisionDt, there are utilities u1, u2 of the
chooser that are both consistent with the chooser’s previous
actions, but lead to different choices on day t.

For example, consider executing Protocol 1.1 on consecu-
tive days. The sets P t are the sets of all divisions; the cutter
is unconstrained in her choices. Even for n = 2 this protocol
is exploitable: the cutter can offer the same division twice,
in which case she knows that for any utility u of the chooser,
the choice on the second day will be identical to that of the
first.

The set P t can be arbitrarily complex; as we are inter-
ested in simple protocols, we introduce the notion of forced
cuts and forced-cut protocols, which are simple to describe
and implement with only a few cuts while being powerful
enough to guarantee non-exploitability. A forced cut is a cut
that is made exogenously; analogously one can think of it
as a cut that the cutter must make. A forced-cut protocol is
one in which (possibly zero) forced cuts partition the cake Ct
into segments Xt

i , and the cutter is required to make a sin-
gle cut in each segment, partitioning it into two slices Xt

i,0

and Xt
i,1. The chooser is then required to choose between

the pieces ∪iXt
i,0 and ∪iXt

i,1.

Example 2.1. We give two examples of forced-cut protocols.

1. Let the cake be the interval (0, 1), and consider the fol-
lowing one-day protocol: there is a forced cut at 0.5.
The cutter makes a cut in each of the segments (0, 0.5)
and (0.5, 1), to create the slices X1,0 = (0, a), X1,1 =
(a, 0.5), X2,0 = (0.5, b) and X2,1 = (b, 1) for some a ∈
(0, 0.5), b ∈ (0.5, 1). The chooser must choose between
the two pieces X = X1,0 ∪X2,0 and X = X1,1 ∪X2,1.

2. Protocol 1.1 is a forced-cut protocol, with 0 forced cuts.

We remark that it is possible to extend the family of forced
cut protocols to allow the chooser to make more than one cut
in each segment. This is unnecessary for the upper bounds,
and it is easy to extend the proof of the lower bound to allow
such protocols. We remark upon this further in Section 4.2.

As a more illustrative example, we give a simple non-
exploitable n-day forced-cut protocol. We note that this pro-
tocol applies to any cake.

Protocol 2.2. For t = {1, 2, . . . , n}, let Ht−1 be the set
of (forced and unforced) cuts made on day t − 1, and let

H0 = ∅. On day t, the forced cuts are Ht−1. Let the seg-
ments resulting from these cuts be Xt

1, . . . , X
t
m. The cutter

cuts each Xt
k, k ∈ {1, . . . ,m} into two slices, Xt

k,0, X
t
k,1.

The chooser chooses between ∪kXt
k,0 and ∪kXt

k,1.
Note that on the first day, this protocol is identical to Pro-

tocol 1.1. Before we show that it is non-exploitable, we give
a characterization of non-exploitable protocols will be use-
ful for this and subsequent proofs.
Lemma 2.3. An n-day cut-and-choose protocol is non-
exploitable if and only if for any possible choice of divisions
by the cutter and choices of the chooser w.r.t. those divisions,
there is utility function for the chooser that is consistent with
those choices.

Proof. For the first direction, assume that the protocol is
non-exploitable, but there exists a set of divisions D =
(D1, . . . , Dn) and choices that is not consistent with any
utility function of the chooser. Let t be the first day for which
there is a division and choice that is not consistent with any
utility function (note that t ≥ 2, as for any D1, both choices
are always possible). There must be at least one chooser util-
ity function that is consistent with D1, . . . , Dt−1, by the as-
sumption that t is the first day for which there is not util-
ity function consistent with a choice. Therefore, for Dt, the
chooser will necessarily have a choice consistent with all
previous choices. But by the assumption that this is a divi-
sion for which some choice does not have a utility function,
the chooser will have exactly one available choice. There-
fore the protocol is exploitable.

The other direction is immediate from the definition of
exploitability.

Theorem 2.4. Protocol 2.2 is non-exploitable and uses
Θ (2n) cuts.

Proof. To show that Protocol 2.2 is non-exploitable, we de-
scribe, for any set of divisions D and choices, a utility func-
tion of the chooser that is consistent with these choices; by
Lemma 2.3 this implies that the protocol is non-exploitable.
We will do this by showing that for any set of divisions D
and any choices, there is at least one slice that is common
to all the choices, and we let the chooser’s utility be con-
centrated in that slice. We show this using induction on the
number of days. The base of the induction, t = 1, is trivial.
For the inductive step, assume that the inductive hypothesis
holds for t − 1 days; there is therefore a slice Xt−1

k′,j′ that is
common to all of the choices until day t−1. By the protocol
definition, this slice is also a segment Xt

k on day t. The cut-
ter cuts this segment into two slices: Xt

k,0 or Xt
k,1, and one

of these must be in the piece chosen by the chooser, hence it
is in all pieces chosen made until day t.

It is easy to verify that 2t − 1 cuts in total are made on
each day, hence the total number of cuts for all n days is∑n
i=1 (2t − 1) = 2n+1 − n− 2.

The problem with Protocol 2.2 is that it uses Θ(2n) cuts.
We are interested in protocols that use a linear number of
cuts (amounting to a constant number every day), or at the
worst polynomial in the number of days. We first consider a
simple case, when the cake is a k-dimensional convex set.

3 k-dimensional convex cakes
In this section we consider a compact, finite k-dimensional
convex set C with non-zero volume in Rn. We define the
following protocol:

Protocol 3.1. On day t, the cutter makes a single cut that
divides the cake into (Xt, Xt). The cut must be orthogonal
to all previous cuts, and intersect all previous cuts within the
interior of C.

Note that this protocol can only be implemented whenever
the total number of days n is at most the dimensionality of
the cake k: if n > k, on any day t > k there cannot exist
a cut that is orthogonal to all previous cuts. Without loss of
generality, we fix n = k. We show the following.

Theorem 1.2. Protocol 3.1 is non-exploitable and uses n
cuts.

Proof. Let h1, ..., hn be the cuts made by the cutter on days
1, . . . , n respectively. In accordance with Protocol 3.1, these
are orthogonal. Let b1, . . . , bn be orthonormal vectors to the
hyperplanes h1, ..., hn respectively. (b1, . . . , bn) is a basis
of Rn; henceforth, we write all points in the Euclidean space
using the origin 0 and basisB = (b1, . . . , bn). For any point
x in Rn, we denote xt the tth coordinate of that point (w.r.t.
B). The cut ht can be represented by a pair (t, ct), where
t ∈ {1, . . . , n}, ct ∈ R (ht is the set of all points x ∈ C
for which xt = ct). We denote Xt = C ∩

{
x : xt ≤ ct

}
and Xt = C ∩

{
x : xt > ct

}
. By the description of the

protocol, the point c = (c1, . . . , cn) must be in the interior
of the polytope.

We apply Lemma 2.3. Fix the cuts as above. Let s =
s1, . . . , st denote the choices made by the chooser, where
si = 0 iff the chooser chose Xt. Let Z be the intersection of
all chosen pieces:

Z =

(⋂
i:si=0

Xt

)
∩

(⋂
i:si=1

Xt

)
.

Any utility function of the chooser that sets u(Z) > 1/2 is
consistent with these cuts and choices. There must be at least
one such function, because Z contains an open set, as c is in
the interior of the polytope.

4 The 1-dimensional case
In this section, we consider the cake that is the interval
(0, 1). This is the most common representation of cakes in
the cake-cutting literature. It turns out that with respect to
exploitability, it is the most interesting: for higher dimen-
sions, we can design non-adaptive forced-cut protocols that
use a linear number of cuts, but, as we show below, this is
not the case when the cake is (0, 1). In contrast, there ex-
ists an adaptive non-exploitable protocol that uses a linear
number of cuts.

4.1 An adaptive non-exploitable 1-dimensional
protocol

Protocol 4.1. On day t, there is a single forced cut at
ht, whose location is adaptively determined in the manner
described below. Given ht, the cutter bisects the left part
(0, ht) and right part (ht, 1) by cutting at `t and rt re-
spectively. The pieces are Xt = (0, `t) ∪ (ht, rt), Xt =
(`t, ht) ∪ (rt, 1).
ht is set adaptively as follows: h1 = 0.5. For t > 1, there

is some (non-atomic) interval (yt, zt) that is common to all
of the chosen pieces on days 1, . . . , t− 1. The forced cut ht
is at (yt + zt)/2.

Before proving the protocol is non-exploitable, we first
show that

Claim 4.2. On day t, an interval (yt, zt) such as the one
specified in the protocol always exists.

Proof. The proof is by induction. The base case, t = 2 holds
as the chooser chose some piece, and hence some slice that
is a non-atomic interval.

For the inductive step, it holds by the inductive hypothesis
that there is some interval (yt, zt) that is in all of the cho-
sen piece on days 1, . . . , t − 1. On day t, the chooser either
chose the piece containing the slice (`t, ht), in which case
set yt+1 = max{yt, `t}, zt+1 = ht or the piece contain-
ing the slice (ht, rt), in which case set yt+1 = ht, zt+1 =
min{zt, rt}.

Theorem 1.3. Protocol 4.1 is non-exploitable and uses 3n
cuts.

Proof. Once again, we apply Lemma 2.3. From Claim 4.2,
for any divisions and any choices, there is a slice Z that is in
common to all chosen pieces. Let the chooser’s utility func-
tion u be such that u(Z) > 1/2.

4.2 Lower bound on the number of cuts for
non-adaptive non-exploitable forced-cut
protocols

In this section we show that there is no forced-cut n-day
non-exploitable protocol that uses O(n) cuts. Recall that by
the definition of forced-cut protocols, the cutter makes a sin-
gle cut in each segment defined by the forced cuts. It is not
difficult to adapt the proof to hold for protocols that either
allow or require the cutter to use more that one cut per seg-
ment, by an extra application of the pigeonhole principle in
the proof of Theorem 1.4.

Given a set of slices {X1,0, X1,1, . . . , Xm,0, Xm,1}, a
division string is a binary string encoding to which piece
each slice belongs. For example, assume that there is a sin-
gle forced cut. The three cuts made are `, h, r, from left
to right, where h is the forced cut. Denote a = (0, `),
b = (`, h), c = (h, r), d = (r, 1).X = {a}∪{c} (which im-
pliesX = {b}∪{d}) is denoted by the binary string 00, and
X = {b} ∪ {c} by the binary string 10. Note that 00 and 11
amount to the same choice for the chooser, as they both lead
to a choice between {a} ∪ {c} and {b} ∪ {d}. There are 2m

possible division strings, hence 2m−1 division strings that
lead to different choices.

Before presenting the proof, we need a technical lemma
and a simple claim.
Lemma 4.3. Let Sk = {x = (x1, . . . , xk)} be a set where
each element x is an (unique, ordered) set of k monotone
increasing real numbers in (0, 1). If |Sk| ≥ 2

∑k
i=1 i

2

, then
there exist x, y ∈ Sk such that ∀i 6= j, xi 6= yj .

Proof. The proof is by induction. The base case S1 : |S1| =
2 is trivially true, as each set consists of a single number.
For the inductive step, assume that the claim holds for all
` ≤ k − 1, and assume towards contradiction that |Sk| ≥
2
∑k

i=1 i
2

and for all x, y ∈ Sk, there are i 6= j such that
xi = yj . Fix some x ∈ Sk. Partition Sk \ {x} into sets Sr as
follows: y ∈ Sr if r is the set of pairs of indices {(i, j)} for
which xi = yj . There are less than 2k

2

possible values of r.
Therefore by the pigeonhole principle, there must be at least
one such Sr whose cardinality is at least 2

∑k−1
i=1 i

2

. Consider
the elements of Sr. They all share at least one coordinate
(i.e., ∃α : ∀y, y′ ∈ Sr, yα = y′α). Removing this coordinate
leaves, for each member of Sr, a set of k − 1 monotone
increasing real numbers. By the inductive hypothesis, there
are y, y′ ∈ Sr for which ∀i 6= j, yi 6= y′j .

Claim 4.4. Let P be a forced-cut protocol. If there are two
days x 6= y ∈ {1, . . . , n} whose forced cuts are 0 < x1 <
x2 < · · · < xk < 1 and 0 < y1 < y2 < · · · < yk < 1
respectively such that ∀i 6= j, xi 6= yj and their division
string is identical, then P is exploitable.

Proof. Assume that there are σ values of i for which xi = yi
(possibly σ = 0). Let γ1, . . . , γσ be those values.

It suffices to show that on days x and y, the cutter can
make divisions {X,X} and {Y, Y } respectively such that
X ⊆ Y , as if the chooser choseX , she will surely choose Y .
We prove this separately for every interval (γq, γq+1), q ∈
{1, . . . σ − 1} and take the union of these cuts. Henceforth,
we focus a single interval (γq, γq+1). As we are now only
concerned with a single such interval, we assume w.l.o.g.
that σ = 0 and simply consider the interval (0, 1). Let ε > 0
be the smallest distance between xi and yj , for all i, j ∈
{1, . . . , k}. Let the division string be s1, . . . , sk+1. For i ∈
{1, . . . , k + 1}, if si = 0, cut at xi−1 + ε/2 (hence Xx

i,0 =
(xi−1, xi−1 + ε/2)). If si = 1, cut at xi − ε/2. There are no
yjs in any of the slices that consist X , hence it is possible to
divide (0, 1) into two pieces {Y, Y } such that X ⊆ Y .

We are now ready to prove our lower bound.
Theorem 1.4. Let c ≥ 1 be a constant, and let P be a non-
adaptive forced-cut protocol that uses at most cn cuts. Then
there exists a constant n0 such that for every n ≥ n0, P is
exploitable.

Proof. The proof is by contradiction. Assume that there ex-
ists a constant c ≥ 1 such that there is a protocol that uses at
most cn cuts for any n. Set n0 = 28c

3+4c; choose n ≥ n0.
By Markov’s inequality, on at least half of the days, the

protocol uses at most 2c cuts. We focus on these days, and

henceforth assume that the cutter makes at most 2c cuts on
each day, and the number of days is n/2 > (2c+1)·28c3+2c.

We now apply the pigeonhole principle twice to show:

1. There is at least one k for which the cutter makes exactly
k cuts, 0 ≤ k ≤ 2c on at least 28c

3+2c ≥ 2k2k
3

days.
2. There are at least 2k

3

> 2
∑k

i=1 i
2

days that have the same
number of cuts and the same division string, as there are
2k possible division strings that lead to different choices.

By Lemma 4.3, there are at least 2 days for which the condi-
tions of Claim 4.4 hold; Claim 4.4 completes the proof.

4.3 A non-adaptive non-exploitable
1-dimensional protocol

We consider the following non-adaptive n-day protocol:
Protocol 4.5. On each day the forced cuts are {hi = i

n+1}
for i ∈ {1, . . . , n}. We denote h0 = 0 and hn+1 = 1.
On day t, for i ∈ {1, . . . , n + 1}, the cutter cuts seg-
ment the (hi−1, hi) at hti, creating two slices Xt

i,0 =

(hi−1, h
t
i), X

t
i,1 = (hti, hi). The two pieces of the divi-

sion on day t are Xt =
(⋃
i 6=t

Xt
i,0

)
∪ Xt

t,1 and Xt =(⋃
i6=t

Xt
i,1

)
∪Xt

t,0.

Figure 1: The second day of executing Protocol 4.5 for n =
3. The red lines are the forced cuts (identical for all days).
The blue lines are the cuts the cutter made on day 2; the
chooser has to choose between X2 = X2

1,0 ∪X2
2,1 ∪X2

3,0 ∪
X2

4,0 (shaded) and its complement.

Theorem 1.5. Protocol 4.5 is non-exploitable and uses
Θ(n2) cuts.

Proof. Once again we make use of Lemma 2.3. Denote
hmin
i = min{h1i , . . . , hni } and hmax

i = max{h1i , . . . , hni }.
For t = 1, . . . , n, set st = 1 if the chooser chose Xt and
st = 0 if she chose Xt. Let S = |{t : st = 1}| be the
number of days on which the chooser chose Xt.

Set ε = 1/n2. The chooser’s utility function is the fol-
lowing. For all i : si = 1, set u(hmax

i , hi+1) = 1
2S + ε. Set

u(hn, h
min
n+1) = 1/2− Sε. For all other h·,·, set u(h·,·) = 0.

This implies u(Xt
i,1) = 1

2S + ε and u(Xt
n+1,0) = 1/2− Sε

for all t. This utility function is consistent with all of the
chooser’s choices: on days t such that st = 1,

u(Xt) =
(⋃
i6=t

Xt
i,0

)
∪Xt

t,1 =
1

2
+

1

2S
− (S − 1)ε > 1/2,

and on days t such that st = 0,

u(Xt) =
(⋃
i6=t

Xt
i,0

)
∪Xt

t,1 =
1

2
− Sε.

5 2-dimensional cakes
Consider a square 2-dimensional cake (0, 1) × (0, 1). (It is
easy to extend the results to any convex shape.)

All of our forced cuts are vertical, hence we can denote
them by a single real number in (0, 1).

Consider first the following n-day protocol.

Protocol 5.1. On day t, there is forced cut ht = t
n+1 .

This bisects the cake into two segments, Xt
0 and Xt

1. The
cutter cuts Xt

0 horizontally into two slices: Xt
0,0, Xt

0,1;
and Xt

1 horizontally into: Xt
1,0, X

t
1,1. The two pieces are

Xt = Xt
0,0 ∪Xt

1,1 and Xt = Xt
0,1 ∪Xt

1,0.

𝑋0,1
2

𝑋0,0
2

𝑋1,0
2

𝑋1,1
2

Figure 2: The second day of executing Protocol 5.1 for two
days. The gray dotted lines are the cuts on day 1. The blue
lines are the cuts on day 2; the chooser has to choose be-
tween X2 = X2

0,0 ∪X2
1,1 (shaded) and X2 = X2

0,1 ∪X2
1,0.

The orange lines represent hmin and hmax in the proof of
Theorem 1.6.

Theorem 1.6. Protocol 5.1 non-exploitable and uses 3n
cuts.

Proof. We apply Lemma 2.3. Let hmax and hmin denote the
maximal and minimal unforced cuts that the cutter made on
the n days (i.e., if the cut is denoted by a real number on the
vertical axis, the largest and smallest such numbers respec-
tively). Denote the choices by a string s = (s1, . . . , sn),
where st = 0 indicates that the chooser chose Xt on day
t, and st = 1 indicates that she chose Xt. We consider
the following 3(n + 1) rectangles: Y tlow, Y tmid, and Y thigh,
t ∈ {1, . . . , n+ 1}:

• Y tlow is the rectangle with bottom left corner at (ht−1, 0)
and top right corner at (ht, hmin).

• Y tmid is the rectangle with bottom left corner at
(ht−1, hmin) and top right corner at (ht, hmax).

• Y thigh is the rectangle with bottom left corner at
(ht−1, hmax) and top right corner at (ht, 1).

Set u(Y tmid) = 0 for all t. If st = 0, set u(Y tlow) = 0,
u(Y thigh) = 2(t−n−2), otherwise (st = 1), set u(Y tlow) =

2(t−n−2), u(Y thigh) = 0.

Set

u(Y n+1
low) = 1/2−

(
n∑
τ=1

u(Y τlow)

)
,

u(Y n+1
high) = 1/2−

(
n∑
τ=1

u(Y τhigh)

)
.

We need to verify that on each day, the chooser’s utility
for the chosen piece is indeed greater that for the other piece.
Fix t, w.l.o.g. (from symmetry), assume that st = 0. We
consider the minimum possible value that the chooser can
have for Xt:

u(Xt) =

t∑
τ=1

u(Y τhigh) +

n+1∑
τ=t+1

u(Y τlow)

≥ u(Y thigh) +

(
1/2−

t∑
τ=1

u(Y τlow)

)

≥ 2(t−n−2) + 1/2−
t−1∑
τ=1

2(τ−n−2)

> 1/2 + 2(t−n−2) − 2(t−n−2)

≥ u(Xt),

where the third inequality uses the fact that u(Y tlow) = 0.
This completes the proof.

6 Conclusion and open questions
The cut complexity of non-adaptive non-exploitable 1-
dimensional forced-cut protocols remains open. In addition,
it would be interesting to extend our work beyond worst-case
analysis, when the agents have some partial prior knowledge
about the other agents’ utility, similarly to (Delgosha and
Gohari 2012) (recall that they only analyze existing proto-
cols and do no design new ones). It would also be interest-
ing to study exploitability in other scenarios common in the
cake-cutting literature: when there are more than 2 agents,
with indivisible goods (as opposed to a divisible cake), and
for other families of protocols, such as moving knife proto-
cols, e.g., (Robertson and Webb 1998).

7 Acknowledgments
Omer Tamuz was supported by a grant from the Simons
Foundation (#419427). Shai Vardi was supported in part by
the Linde Foundation and NSF grants CNS-1254169 and
CNS-1518941. Juba Ziani was supported by NSF grants
#1331343 and #1518941, and US-Israel Binational Science
Foundation grant #201234.

A Example
Example A.1. Let the chooser’s utility, uch, be concen-
trated in the interval [0.4, 1], i.e., uch([0.4, 1]) = 1. Fur-
thermore, uch([0.4, 0.5]) = 1/2−ε, uch([0.5, 1]) = 1/2+ε,
uniform across both intervals. If the cutter cuts at 0.5 on day
1, and the chooser knows the cutter will move the cut 0.1 in

the direction of her choice, it is unreasonable to assume that
she would act myopically, as her total utility would be 1.1
instead of 1.5 if she lied on day 1.

References
Aziz, H., and Mackenzie, S. 2016a. A discrete and bounded
envy-free cake cutting protocol for any number of agents. In
IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), 416–427.
Aziz, H., and Mackenzie, S. 2016b. A discrete and bounded
envy-free cake cutting protocol for four agents. In Proceed-
ings of the 48th Annual ACM Symposium on Theory of Com-
puting (STOC), 454–464.
Balkanski, E.; Brânzei, S.; Kurokawa, D.; and Procaccia,
A. D. 2014. Simultaneous cake cutting. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelli-
gence, 566–572.
Barbanel, J. B.; Brams, S. J.; and Stromquist, W. 2009. Cut-
ting a pie is not a piece of cake. The American Mathematical
Monthly 116(6):496–514.
Blum, A.; Dickerson, J. P.; Haghtalab, N.; Procaccia, A. D.;
Sandholm, T.; and Sharma, A. 2015. Ignorance is almost
bliss: Near-optimal stochastic matching with few queries.
In Proceedings of the Sixteenth ACM Conference on Eco-
nomics and Computation, EC ’15, 325–342.
Brams, S. J., and Taylor, A. D. 1996. Fair Division: From
cake-cutting to dispute resolution. Cambridge University
Press.
Brams, S. J.; Jones, M. A.; and Klamler, C. 2006. Better
ways to cut a cake. Notices of the American Mathematical
Society 53(11):1314–1321.
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2010. Truth, justice, and cake cutting. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,.
Delgosha, P., and Gohari, A. A. 2012. Information theo-
retic cutting of a cake. In 2012 IEEE Information Theory
Workshop (ITW), 517–521.
Dubins, L. E., and Spanier, E. H. 1961. How to cut a cake
fairly. American mathematical monthly 1–17.
Edmonds, J., and Pruhs, K. 2006. Cake cutting really is not
a piece of cake. In SODA, 271–278.
Even, S., and Paz, A. 1984. A note on cake cutting. Discrete
Applied Mathematics 7:285–296.
Fishburn, P. 1970. Utility Theory for Decision Making. Wi-
ley, New York.
Friedman, E. J.; Psomas, C.; and Vardi, S. 2015. Dynamic
fair division with minimal disruptions. In Proceedings of the
Sixteenth ACM Conference on Economics and Computation,
EC ’15, 697–713.
Friedman, E. J.; Psomas, C.; and Vardi, S. 2017. Controlled
dynamic fair division. In Proceedings of the 2017 ACM Con-
ference on Economics and Computation, EC, 461–478.
Gilboa, I., and Schmeidler, D. 1989. Maxmin expected util-
ity with non-unique prior. Journal of Mathematical Eco-
nomics 18(2):141 – 153.

Gupta, A.; Nagarajan, V.; and Singla, S. 2017. Adaptiv-
ity gaps for stochastic probing: Submodular and XOS func-
tions. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, 1688–
1702.
Iyer, K., and Huhns, M. N. 2009. A procedure for the allo-
cation of two-dimensional resources in a multiagent system.
Int. J. Cooperative Inf. Syst. 18(3-4):381–422.
Knaster, B. 1944. Sur le problème du partage pragmatique
de h. steinhaus. Ann. Soc. Polonaise Math. 19:228–231.
Mossel, E., and Tamuz, O. 2010. Truthful fair division. In
Algorithmic Game Theory - Third International Symposium,
SAGT, 288–299.
Neyman, J. 1946. Un théorèm d’existence. C.R. Acad. Sci.
Paris 222:843–845.
Procaccia, A. D., and Wang, J. 2017. A lower bound for
equitable cake cutting. In Proceedings of the 2017 ACM
Conference on Economics and Computation, EC, 479–495.
Procaccia, A. D. 2009. Thou shalt covet thy neighbor’s cake.
In IJCAI 2009, Proceedings of the 21st International Joint
Conference on Artificial Intelligence, 239–244.
Procaccia, A. D. 2016. Cake cutting algorithms. In Hand-
book of Computational Social Choice. Cambridge Univer-
sity Press. 311–330.
Robertson, J. M., and Webb, W. A. 1998. Cake Cutting
Algorithms: be fair if you can. AK Peters.
Segal-Halevi, E.; Nitzan, S.; Hassidim, A.; and Aumann,
Y. 2017. Fair and square: Cake-cutting in two dimensions.
Journal of Mathematical Economics 70:1 – 28.
Segal-Halevi, E. 2016. How to re-divide a cake fairly.
arXiv preprint arXiv:1603.00286.
Sinn, H.-W. 2012. Economic decisions under uncertainty.
Springer Science & Business Media.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16(1).
Stromquist, W. 1980. How to cut a cake fairly. American
Mathematical Monthly 640–644.
Varian, H. R. 1974. Equity, envy, and efficiency. Journal of
Economic Theory 9(1):63–91.
Wald, A. 1945. Statistical decision functions which mini-
mize the maximum risk. Annals of Mathematics 46(2):265–
280.
Wald, A. 1949. Statistical decision functions. Ann. Math.
Statist. 20(2):165–205.
Walsh, T. 2011. Online cake cutting. In Algorithmic Deci-
sion Theory. Springer. 292–305.
Woeginger, G., and Sgall, J. 2007. On the complexity of
cake cutting. Discrete Optimization 4(2):213–220.

