CLIQUES IN THE UNION OF GRAPHS

RON AHARONI, ELI BERGER, MARIA CHUDNOVSKY, AND JUBA ZIANI

Abstract

Let B and R be two simple graphs with vertex set V, and let $G(B, R)$ be the simple graph with vertex set V, in which two vertices are adjacent if they are adjacent in at least one of B and R. For $X \subseteq V$, we denote by $B \mid X$ the subgraph of B induced by X; let $R \mid X$ and $G(B, R) \mid X$ be defined similarly. A clique in a graph is a set of pairwise adjacent vertices. A subset $U \subseteq V$ is obedient if U is the union of a clique of B and a clique of R. Our first result is that if B has no induced cycles of length four, and R has no induced cycles of length four or five, then every clique of $G(B, R)$ is obedient. This strengthens a previous result of the second author, stating the same when B has no induced C_{4} and R is chordal.

The clique number of a graph is the size of its maximum clique. We say that the pair (B, R) is additive if for every $X \subseteq V$, the sum of the clique numbers of $B \mid X$ and $R \mid X$ is at least the clique number of $G(B, R) \mid X$. Our second result is a sufficient condition for additivity of pairs of graphs.

1. Introduction

Throughout this paper B (for "Blue") and R (for "Red") are two graphs (identified with their edge sets) on the same vertex set V. If in this setting $B \cup R$ is a clique, then it is not necessarily the case that V is the union of a clique in B and a clique in R. It is not even always true that $\omega(B)+\omega(R) \geq|V|$ (where, as usual, $\omega(G)$ is the maximal size of a clique in G). For example, if B is the random graph and R is its complement, then $\omega(B)=\omega(R)=O(\log |V|)$. If B is the disjoint union of k cliques of size k each, and R is its complement, then $|V|=k^{2}$ while $\omega(B)=\omega(R)=k$, and in this case B does not contain an induced C_{4} and R does not contain induced cycles of length larger than 4 (but it does contain induced $C_{4} \mathrm{~s}$). In this paper we study sufficient conditions on B and R for the above two properties to hold. Namely, we shall find conditions implying that a clique in $G(B, R)$ is the vertex union of a clique in B and a clique in R, and conditions implying that the sum of the clique numbers of B and of R is the clique number of their union.

For B and R as above, we denote the union of B and R by $G(B, R)$, so two vertices in V are adjacent in $G(B, R)$ if they are adjacent in at least one of B and R.

Definition 1.1. We say that a subset $U \subseteq V$ is obedient if there exists an R-clique X and a B-clique Y such that $U=X \cup Y$. We say that it is size obedient if $|U| \leq \omega(B \mid U)+\omega(R \mid U)$.

In the above definition of obedience we may clearly assume that $X \cap Y=\emptyset$. We then say that the pair (X, Y) is a good partition of U.

The original motivation for our study came from a theorem of Tardos, on 2-intervals. A 2-interval is the union of 2 intervals, each on a separate line. In [5] Tardos proved the following:

Theorem 1.2. If F is a finite family of 2 -intervals, sharing the same pair of lines, then $\tau(F) \leq$ $2 \nu(F)$. Moreover, if $\nu(F)=k$ then there exist k points on the first line and k points on the second line, that together meet all 2 -intervals in F.

[^0]In the language of union of graphs, Theorem 1.2 is:
Theorem 1.3. Let B and R be two interval graphs on the same vertex set V, and let k be the maximal size of a stable set in $G(B, R)$. Then there exist k cliques C_{1}, \ldots, C_{k} in G and k cliques $C_{k+1}, \ldots, C_{2 k}$ in R such that $V=\bigcup_{i=1}^{2 k} C_{i}$.

This result is non-trivial even for $k=1$. In [1], the second author of this paper generalized the result of Tardos to chordal graphs. The case $k=1$ of this result is:

Theorem 1.4. Let B and R be two chordal graphs on the same vertex set V. If $G(B, R)$ is a complete graph, then V is obedient.

The methods used in [5] and [1] are topological. However, for $k=1$ a combinatorial proof is known. This proof yields the stronger result, for whose formulation we need some further definitions. A stable set of G is a clique of G^{c}, the complement of G. For a subset X of $V(G)$, the graph $G \mid X$ is the subgraph of G induced by X. For a graph H, we say that G contains H if some induced subgraph of G is isomorphic to H. If G does not contain H, then G is H-free. If \mathcal{H} is a family of graphs, then G is \mathcal{H}-free if G is H-free for every $H \in \mathcal{H}$.

Let $k \geq 3$ be an integer. We denote by C_{k} the cycle on k vertices. For a graph G, if $v_{1}, \ldots, v_{k} \in$ $V(G)$ are distinct vertices such that $v_{i} v_{j} \in E(G)$ if and only if $|i-j|=1$ or $|i-j|=k-1$, we say that $v_{1}-\ldots-v_{k}-v_{1}$ is a C_{k} in G. A graph is chordal if no induced subgraph of it is a cycle on at least four vertices.

The combinatorial proof of Theorem 1.4 yields that it suffices to assume that one of the graphs is chordal, and the other is C_{4}-free. The main result in the first part of the paper is a further strengthening of this fact:

Theorem 1.5. Let B and R be two graphs on the same vertex set V, such that B is $\left\{C_{4}, C_{5}\right\}$-free, and R is C_{4}-free. If $G(B, R)$ is a complete graph, then V is obedient.

A graph is called split if its vertex set can be split into a clique and an indpendent set. Theorem 1.5 is a generalization of the well-known characterization of split graphs [2]: a graph is split if and only if no induced subgraph of it is a cycle on four or five vertices, or a pair of disjoint edges (the complement of a 4 -cycle). .

A corollary of Theorem 1.5 is:
Theorem 1.6. Let B and R be two graphs on the same vertex set V, such that B is $\left\{C_{4}, C_{5}\right\}$-free, and R is C_{4}-free. Then $\omega(G(B, R)) \leq \omega(B)+\omega(R)$.

Here is a symmetric formulation of Theorem 1.6:
Theorem 1.7. Let B and R be two graphs with vertex set V, and suppose that some clique in $G(B, R)$ is not obedient. Then either

- one of B, R contains C_{4}, or
- both B and R contain C_{5}.

We remark that neither conclusion of Theorem 1.7 is redundant, namely each may occur while the other does not. Let $B \mid X$ be isomorphic to C_{4} for some $X \subseteq V$, and $R\left|X=B^{c}\right| X$; then X is a clique in $G(B, R)$, and yet X cannot be expressed as the union of a clique of B and a clique of R. Similarly, let $B \mid X$ be isomorphic to C_{5} for some $X \subseteq V$, and $R\left|X=B^{c}\right| X$ (and thus $R \mid X$ is also isomorphic to C_{5}); then again X is a clique in $G(B, R)$, and yet X cannot be expressed as the union of a clique of B and a clique of R. Thus Theorem 1.7 provides an answer to the question: for which pairs (B, R) every clique of $G(B, R)$ is obedient?

Our second goal is to give sufficient conditions concerning $\omega(G(B . R))$.

Definition 1.8. The pair (B, R) is additive if for every $X \subseteq V$,

$$
\omega(B \mid X)+\omega(R \mid X) \geq \omega(G(B, R) \mid X) .
$$

The following is immediate:
Theorem 1.9. Let B and R be two graphs with vertex set V. The pair (B, R) is additive if and only if every clique in $G(B, R)$ is size obedient.

Note that if $B \mid X$ is isomorphic to C_{4} for some $X \subseteq V$, and $R\left|X=B^{c}\right| X$, then $\omega(B \mid X)=$ $\omega(R \mid X)=2$, and thus

$$
\omega(B \mid X)+\omega(R \mid X)=|X| .
$$

So, additivity does not imply obedience, and our goal here is to modify the first conclusion of 1.7 , in order to obtain a characterization of additive pairs.

For a graph G and two disjoint subsets X and Y of $V(G)$, we say that X is G-complete (G anticomplete) to Y if every vertex of X is adjacent (non-adjacent) to every vertex of Y. If $|X|=1$, say $X=\{x\}$, we write " x is G-complete (G-anticomplete) to Y " instead of " $\{x\}$ is G-complete (G-anticomplete) to Y ". When there is no risk of confusion, we write "complete" ("anticomplete") instead of " G-complete" (" G-anticomplete").

Let \mathcal{F} be the family of graphs with vertex set $\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ where $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are cliques, a_{i} is non-adjacent to b_{i} for $i \in\{1,2,3\}$, and the remaining adjacencies are arbitrary.

Let P_{0} be the graph with vertex set $\left\{a_{1}, a_{3}, a_{3}, b_{1}, b_{2}, b_{3}, c\right\}$ where

- $\left\{a_{1}, a_{2}, a_{3}\right\}$ is a clique,
- $\left\{b_{1}, b_{2}, b_{3}\right\}$ is a stable set,
- for $i \in\{1,2,3\}, b_{i}$ is non-adjacent to a_{i}, and complete to $\left\{a_{1}, a_{2}, a_{3}\right\} \backslash\left\{a_{i}\right\}$,
- c is adjacent to b_{1}, and has no other neighbors in P_{0}.

Let P_{1} be the graph obtained from P_{0} by adding the edge $c b_{2}$, and let P_{2} be the graph obtained from P_{1} by adding the edge $c b_{3}$. Let $\mathcal{P}=\left\{P_{0}, P_{1}, P_{2}\right\}$.

Figure 1. P_{0}

Figure 2. P_{1}

Figure 3. P_{2}

We can now state our second result.
Theorem 1.10. Let B and R be two graphs with vertex set V. Then at least one of the following holds:
(1) the pair (B, R) is additive
(2) one of B, R contains a member of \mathcal{F}
(3) both B and R contain C_{5}
(4) both B and R contain P_{0}^{c}
(5) B contains P_{0}^{c}, and R contains a member of \mathcal{P}
(6) R contains P_{0}^{c}, and B contains a member of \mathcal{P}.

Let us show that, similarly to the state of affairs in Theorem 1.7, all conclusions of Theorem 1.10 are necessary. Taking B to be a member of \mathcal{F} (or C_{5}), and taking $R=B^{c}$, we construct a pair that is not additive, and that satisfies only (1) (or only (2)). Next, let $B=P_{0}^{c}$, and let R be the graph obtained from $P_{0}=B^{c}$ by adding the edge $c a_{1}$; then (B, R) is not additive, and it only satisfies (3). Finally, let $B=P_{0}^{c}$, and let R be the graph obtained from B^{c} by adding none, one or both of the edges $c b_{2}$ and $c b_{3}$; then the pair (B, R) is not additive, and it only satisfies (4). Clearly, (5) is just (4) with the roles of R and B reversed.

2. Pairs of chordal - C_{4}-Free graphs

We start with a simple proof of Theorem 1.5 in the case that B is chordal.
Theorem 2.1. Let B, R be two graphs on the same vertex set V, such that B is chordal and R is $C_{4}-$ free. If $G(B, R)$ is a complete graph, then V is obedient.
Proof. By a theorem of [3], a graph is chordal if and only if it is the intersection graph of a collection of subtrees of some tree. Let T be a tree, and let $\left(t_{v}: v \in V\right)$ be subtrees of T such that $u v \in E(B)$ if and only of $V\left(t_{u}\right) \cap V\left(t_{v}\right) \neq \emptyset$. For $x \in V(T)$ and an edge $e=x y \in E(T)$ containing it, write $V_{x}=\left\{v \in V: x \in V\left(t_{v}\right)\right\}$ and $V_{e}=\left\{v \in V: e \in E\left(t_{v}\right)\right\}$. Note that V_{x} is a B-clique. Taking again $e=x y$, let $V_{x e}$ denote the set of all $v \in V$ such that t_{v} is contained in the connected component of $T-x$ containing y. Similarly, let $V_{e x}$ denote the set of all $v \in V$ such that t_{v} is contained in the connected component of $T-e$ containing x. We also define $V_{e \bar{x}}=V \backslash\left(V_{e} \cup V_{e x}\right)=V_{e y}$ and $V_{x \bar{e}}=V \backslash\left(V_{x} \cup V_{x e}\right)=\bigcup_{x \in e^{\prime} \neq e} V_{x e^{\prime}}$. Note that $V_{e \bar{x}}=V_{x e}$. We write $x \leadsto e$ if $V_{x \bar{e}}$ is an R-clique and write $e \leadsto x$ if $V_{e \bar{x}}$ is an R-clique.

Assertion 2.1.1. Every vertex $x \in V(T)$ belongs to some edge $e \in E(T)$ such that $x \leadsto e$. For every edge $e=x y \in E(T)$ either $e \leadsto x$ or $e \leadsto y$.
Proof. Let $e=x y \in E(T)$ and assume for contradiction that neither $V_{e x}$ nor $V_{e y}$ is an R-clique. Let $a, b \in V_{e x}$ and $c, d \in V_{e y}$ satisfy $a b, c d \notin E(R)$. Then $a-c-b-d-a$ is a C_{4} in R.

Similarly, let $x \in V(T)$ and let e_{1}, \ldots, e_{d} be the edges containing it. By the same argument as above, all but at most one of the sets $V_{x e_{1}}, \ldots, V_{x e_{d}}$ are cliques in R. Therefore $x \leadsto e_{i}$ for some $i=1, \ldots, d$.

Using Assertion 2.1.1 we can choose a vertex $x_{0} \in V(T)$ and construct a walk $x_{0} \leadsto e_{1} \leadsto x_{1} \leadsto$ $e_{2} \leadsto x_{2} \leadsto e_{3} \leadsto x_{3} \leadsto \ldots$. Since T is finite and has no cycles, the walk must turn back at some stage, i.e., there exist some vertex $x \in V(T)$ and edge $e=x y \in E(T)$ such that $x \leadsto e \leadsto x$. This means that $V_{x \bar{e}}$ and $V_{e \bar{x}}=V_{x e}$ are R-cliques. Since $V_{x \bar{e}}$ is R-complete to $V_{x e}$, the union $D=V_{x \bar{e}} \cup V_{x e}=V \backslash V_{x}$ is also an R-clique. Taking the B-clique $C=V_{x}$ we get $V=C \cup D$.

3. Proof of Theorem 1.7

Let $B \backslash R$ be the graph with vertex set V, such that two vertices are adjacent in $B \backslash R$ if and only if they are adjacent in B and non-adjacent in R. The graph $R \backslash B$ is defined similarly.

Let G be a graph. A set $C \subset V(G)$ is a cutset if there exist disjoint $P, Q \subseteq V(G)$ such that $V(G) \backslash C=P \cup Q$, and P is anticomplete to Q in G. We say that C is a clique cutset if it is a cutset, and C is a clique of G.

We start with the following easy observation:

Lemma 3.1. Let B, R be C_{4}-free graphs with vertex set V, let C be a cutset of $B \backslash R$, and let P, Q be as in the definition of a cutset. If $G(B, R)$ is a complete graph then the following hold:
(1) One of P and Q is an R-clique.
(2) $N_{R}(c) \cap Q$ is an R-clique for every $c \in C$ with $\left(N_{B}(c) \backslash N_{R}(c)\right) \cap P \neq \emptyset$.
(Here and below, if v is a vertex in a graph G we denote by $N_{G}(v)$ the set of neighbors of v in G.)
Proof. Since $G(B, R)$ is a complete graph, it follows that P is R-compelte to Q. If (1) fails, then there exist vertices $x, y \in P$ and $u, v \in Q$ such that $x y$ and $u v$ are edge of $B \backslash R$. But now $x-y-u-v-x$ is a C_{4} in R, a contradiction. If (2) fails, then there exist $x \in P$ and $u, v \in Q$ such that $x c$, $u v$ are edges of $B \backslash R$, and so $x-u-c-v-x$ is a C_{4} in R, again a contradiction. This proves the theorem.

A weak clique cutset in B is a clique C of B that is a cutset in $B \backslash R$. Note that a clique cutset of B is in particular a weak clique cutset, but the converse need not be true. Weak clique cutsets are useful to us because of the following:

Lemma 3.2. Let B and R be C_{4}-free graphs with vertex set V, and assume that every proper subset $U \subset V$ is obedient. Assume also that $G(B, R)$ is a complete graph. If there is a weak clique cutset in B (or in R), then V is obedient.
Proof. Let C, P, Q be as in the definition of a weak clique cutset in B, and assume that C is minimal with these properties. Since $G(B, R)$ is a complete graph, it follows that P is R-complete to Q. The minimality of C implies that for every $c \in C$ we have $\left(N_{B}(c) \backslash N_{R}(c)\right) \cap P \neq \emptyset$, for otherwise we could move c to Q. Similarly, $\left(N_{B}(c) \backslash N_{R}(c)\right) \cap Q \neq \emptyset$. By Lemma 3.1(1), we may assume that P is an R-clique. By the induction hypothesis $V \backslash P$ is obedient, namely there exist $X, Y \subseteq V$ such that $X \cup Y=V \backslash P, X$ is a B-clique, and Y is an R-clique; let X and Y be chosen with $Y \cap C$ minimal.

We may assume that $(X, Y \cup P)$ is not a good partition of V, for otherwise the theorem holds. This implies that there exists $p \in P$ such that $\left(N_{B}(p) \backslash N_{R}(p)\right) \cap Y \neq \emptyset$. Let $Z=\left(N_{B}(p) \backslash N_{R}(p)\right) \cap Y$. Since P is R-complete to Q, it follows that $Z \subseteq C$. Choose $z \in Z$ with $\left(N_{R}(z) \backslash N_{B}(z)\right) \cap(Q \cap X)$ minimal. Let $N=\left(N_{R}(z) \backslash N_{B}(z)\right) \cap(Q \cap X)$. Since $z \in Y$, and Y is an R-clique, we deduce that z is R-compelte to $N \cup Y$. Therefore, Lemma 3.1(2) implies that $N \cup(Y \cap Q)$ is an R-clique.

By the minimality of $Y \cap C$, the pair $(X \backslash N) \cup\{z\},(Y \backslash\{z\}) \cup N$ is not a good partition of $V \backslash P$. Since C is a B-clique, so is $(X \backslash N) \cup\{z\}$. This implies that $(Y \backslash\{z\}) \cup N$ is not an R-clique, and since Y and N are R-cliques there exists $y \in(C \cap Y) \backslash\{z\}$ and $n \in N$ such that $y n \in E(B \backslash R)$. Since $p-y-z-n-p$ is not a C_{4} in R, it follows that $y \in Z$. By the choice of z, there exists $m \in Q \cap X$ such that $m y \in E(R \backslash B)$, and $m z \in E(B)$. But now $y-z-m-n-y$ is an induced C_{4} in B, a contradiction. This proves Lemma 3.2.

Remark 3.3. Since a chordal graph is either complete or admits a clique cutset (say, the set of neighbors of a simplicial vertex), Lemma 3.2 yields another proof of Theorem 2.1.

Lemma 3.4. Let B and R be C_{4}-free graphs with vertex set V, and assume that every proper subset U of V is obedient. Assume also that B is C_{5}-free. Let $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}$ be a C_{5} in R, where $v_{1} v_{2}, v_{3} v_{4} \in E(R \backslash B)$. Then V is obedient.
Proof. Since $v_{1}-v_{2}-v_{3}-v_{4}-v_{5}-v_{1}$ is a C_{5} in R, it follows that all edges of the cycle $v_{1}-v_{3}-$ $v_{5}-v_{2}-v_{4}-v_{1}$ belong to $E(B \backslash R)$. Then $v_{2} v_{3} \in E(R \backslash B)$, since otherwise $v_{1}-v_{4}-v_{2}-v_{3}-v_{1}$ is a C_{4} in B. Since B is C_{5}-free, it follows that at least one of the edges $v_{1} v_{5}, v_{4} v_{5}$ belongs to $E(B)$. By symmetry we may assume that $v_{1} v_{5} \in E(B)$. Since $v_{1}-v_{4}-v_{2}-v_{5}-v_{1}$ is not an induced C_{4} in B, it follows that $v_{4} v_{5} \in E(B)$.

We now observe that there is a unique good partition of $\left\{v_{1}, . ., v_{5}\right\}$, namely the B-clique $\left\{v_{4}, v_{5}, v_{1}\right\}$ and the R-clique $\left\{v_{2}, v_{3}\right\}$. Let $u \in V \backslash\left\{v_{1}, \ldots, v_{5}\right\}$. Note that the set $\left\{u, v_{1}, \ldots, v_{5}\right\}$ is obedient. This
can be seen by exhaustive search. Another way to see this is to note that $G \mid\left\{\left(u, v_{1}, \ldots, v_{5}\right\}\right.$ is not isomorphic to C_{6} and does not contain C_{4} or C_{5}, and is therefore chordal, so the set $\left\{u, v_{1}, \ldots, v_{5}\right\}$ is obedient by Lemma 2.1. This implies that every vertex of $V \backslash\left\{v_{1}, . ., v_{5}\right\}$ is either R-complete to $\left\{v_{2}, v_{3}\right\}$ or B-complete to $\left\{v_{1}, v_{4}, v_{5}\right\}$.

Let A be the set of vertices in $V \backslash\left\{v_{1}, . ., v_{5}\right\}$ that are not R-complete to $\left\{v_{2}, v_{3}\right\}$. Then A is B-complete to $\left\{v_{1}, v_{4}, v_{5}\right\}$. We claim that A is a B-clique. Assume for a contradiction that there exist two distinct vertices u, v in A such that $u v \notin E(B)$. Then each of u and v is not R-complete to $\left\{v_{2}, v_{3}\right\}$. By symmetry we may assume that $u v_{2} \notin E(R)$. If $v v_{2} \notin E(R)$ then $v-v_{2}-u-v_{1}-v$ is a C_{4} in B, a contradiction. Thus $v v_{2} \in E(R)$, and consequently $v v_{3} \notin E(R)$. Exchanging the roles of v_{2} and v_{3} we deduce that $u v_{3} \in E(R)$. But now $u-v-v_{2}-v_{3}-u$ is a C_{4} in R, a contradiction. This proves the claim that A is a B-clique.

Since no vertex of A is R-complete to $\left\{v_{2}, v_{3}\right\}$, it follows that A is B-complete to $\left\{v_{1}, v_{4}, v_{5}\right\}$, and so the claim of the previous paragraph implies that $A \cup\left\{v_{1}, v_{4}, v_{5}\right\}$ is a B-clique. Let $Z=$ $V \backslash\left(A \cup\left\{v_{1}, v_{4}, v_{5}\right\}\right)$. If $Z=\left\{v_{2}, v_{3}\right\}$ then $A \cup\left\{v_{1}, v_{4}, v_{5}\right\}, Z$ is a good partition of V, and so V is obedient. Thus we may assume that $Z \backslash\left\{v_{2}, v_{3}\right\} \neq \emptyset$. Since $\left\{v_{2}, v_{3}\right\}$ is R-complete to $Z \backslash\left\{v_{2}, v_{3}\right\}$, it follows that $A \cup\left\{v_{1}, v_{4}, v_{5}\right\}$ is a weak clique cutset in B, and hence V is obedient by Lemma 3.2. This proves Lemma 3.4.

We can now prove Theorem 1.7, which we restate:
Theorem 3.5. Let B and R be two graphs with vertex set V, and suppose that some clique of $G(B, R)$ is not obedient. Then either

- one of B, R contains C_{4}, or
- both B and R contain C_{5}.

Proof. Suppose that the theorem is false, and let B, R be graphs with vertex set V, such that some clique of $G(B, R)$ is not obedient, and

- both B and R are C_{4}-free, and
- at least one of B and R is C_{5}-free.

We may assume that subject to these conditions V, B, R and $G(B, R)$ are chosen with $|V|$ minimum. Then $G(B, R)$ is a complete graph, and so every pair of vertices of V is an edge of at least one of B, R. The minimality of $|V|$ implies that V is not obedient, but U is obedient for every proper subset U of V.

Let C be a cutset of $B \backslash R$, and let P, Q be as in the definition of a cutset. Then P is R-compelte to Q. We may assume that C is chosen so that the number of edges in $(R \backslash B) \mid C$ is minimum. We may also assume that C is a minimal cutset of $B \backslash R$, which implies that for every $c \in C$, the sets $N_{B \backslash R}(c) \cap P$ and $N_{B \backslash R}(c) \cap Q$ are both non-empty.

By Lemma 3.1(1) we may assume that P is an R-clique. Let Z be the set of vertices of C that have an $R \backslash B$-neighbor in C. By Lemma $3.2 Z \neq \emptyset$. Let $z \in Z$ be with $N_{B \backslash R}(z) \cap P$ minimal (which is the same as saying that $N_{R}(z) \cap P$ is maximal). Let $N=N_{B \backslash R}(z) \cap P$. Let $y \in Z$ satisfy $z y \in E(R \backslash B)$.

Assertion 3.5.1. y is $B \backslash R$-complete to N.
Proof. Assume that there exists a vertex $n \in N$ such that $y n \in E(R)$. By the minimality property of z, there exists a vertex $m \in N_{B \backslash R}(y) \backslash N_{B \backslash R}(z)$. Then $y-z-m-n-y$ is a C_{4} in R, a contradiction.

Assertion 3.5.2. N is B-complete to C.
Proof. Suppose that there exist $x \in C$ and $n \in N$ such that $x n \in R \backslash B$. Since $z-x-y-n-z$ is not a C_{4} in B, and since, by Assertion 3.5.1, zn, yn belong to $E(B)$ (in fact, to $E(B \backslash R)$), it
follows that at least one of $x z, x y$ is in $E(R \backslash B)$. This implies, in particular, that $x \in Z$. By the minimality of z, the fact that $x n \in E(R)$ implies that there exists $p \in P$ such that $x p \in E(B \backslash R)$ and $z p \in E(R)$. Since $x-n-p-z-x$ is not a C_{4} in R, it follows that $x z \in E(B \backslash R)$ (recall that $p n \in E(R)$ since P is an R-clique). Therefore, since $x-y-n-z-x$ is not a C_{4} in B, we deduce that $x y \in E(R \backslash B)$. Since $n-p-y-x-n$ is not a C_{4} in R, it follows that $y p \in E(B \backslash R)$.

Summarizing the information in the last paragraph, we see that $p-n-x-y-z-p$ is a C_{5} in R, containing two disjoint edges $n x, y z \in E(R \backslash B)$. Consequently, B is C_{5}-free, and so Lemma 3.4 implies that V is obedient, a contradiction.

Assertion 3.5.3. $P=N$.
Proof. Suppose not. Then $(C \backslash\{z\}) \cup N$ is a cutset in $B \backslash R$ (since $P \backslash N$ is R-complete to $Q \cup\{z\}$). Now, since N is B-complete to X, this contradicts the minimality of the number of edges of $(R \backslash B) \mid C$.

By the minimality of z, and the fact that N is B-complete to C, Assertion 3.5.3 implies:
Assertion 3.5.4. P is $B \backslash R$-complete to Z, and P is B-complete to C.
Assertion 3.5.5. P is a B-clique.
Proof. Suppose not, and let $u, v \in P$ such that $u v \in E(R \backslash B)$. Then $u-z-v-y-u$ is a C_{4} in B, a contradiction.

So far we focused mainly on the edges with ends in $C \cup P$. We now switch our attention to the edges with ends in $C \cup Q$. Let $z^{\prime} \in Z$ be such that $N^{\prime}=N_{B \backslash R}\left(z^{\prime}\right) \cap Q$ is minimal. Let $y^{\prime} \in Z$ satisfy $y^{\prime} z^{\prime} \in E(R \backslash B)$.

Let $c \in P$. Let (S, T) be a good partition of $V \backslash\{c\}$ where S is a B-clique and T is an R-clique. Since Z is not a B-clique, $Z \cap T \neq \emptyset$. Since P is $B \backslash R$-complete to Z, this implies that $P \backslash\{c\} \subseteq S$. Let M be the set of vertices $m \in Q \cap S$ such that $c m \in E(R \backslash B)$.
Assertion 3.5.6. $M \cap N^{\prime}=\emptyset$, and therefore z^{\prime} is R-complete to M.
Proof. It is enough to prove that $M \cap N^{\prime}=\emptyset$. Assume that there exists an element $n \in M \cap N^{\prime}$. Since $n-z^{\prime}-c-y^{\prime}-n$ is not a C_{4} in B, it follows that $y^{\prime} n \in E(R \backslash B)$. By the minimality property of z^{\prime} it follows that there exists $q \in Q \backslash N^{\prime}$ such that $y^{\prime} q \in E(B \backslash R)$ and $z^{\prime} q \in E(R)$. Since $z^{\prime}-y^{\prime}-n-q-z^{\prime}$ is not a C_{4} in R, it follows that $q n \in E(B \backslash R)$. By Assertion 3.5.3, $c y^{\prime}, c z^{\prime} \in E(B \backslash R)$. Now $n-c-q-z^{\prime}-y^{\prime}-n$ is a C_{5} in R. Therefore B is C_{5}-free. Since $c n, y^{\prime} z^{\prime} \in E(R \backslash B)$, Lemma 3.4 implies that V is obedient, a contradiction.
Assertion 3.5.7. $M \cup(T \cap Q)$ is an R-clique, then V is obedient.
Proof. Suppose that $a, b \in M \cup(T \cap Q)$ and $a b \in E(B \backslash R)$. Since T is an R-clique, we may assume that $a \in M$, and hence by Assertion 3.5.6 $a z^{\prime} \in R$. Since Z is $B \backslash R$-compelte to $P, 3.1$ (2) implies that $N_{R}\left(z^{\prime}\right) \cap Q$ is an R-clique, and therefore $b \in T \cap Q$, and z is $z^{\prime} b \in E(B \backslash R)$. Consequently, $z^{\prime} \in S$. Since $y^{\prime} z^{\prime} \in E(R \backslash B)$, we deduce that $y^{\prime} \in T$. Since both y^{\prime} and b are in T, it follows that $y^{\prime} b \in E(R)$. Since $y^{\prime}-b-a-c-y^{\prime}$ is not a C_{4} in R, it follows that $a y^{\prime} \in E(B \backslash R)$. Now $c-b-y^{\prime}-z^{\prime}-a-c$ is a C_{5} in R, and so B is C_{5}-free. Since $c a, y^{\prime} z^{\prime} \in E(R \backslash B)$, Lemma 3.4 implies that V is obedient, a contradiction.

Let W be the set of vertices in $C \cap T$ that are R-complete to M. Since by Assertion 3.5.7 $M \cup(T \cap Q)$ is an R-clique, it follows that $W \cup M \cup(T \cap Q)$ is an R-clique. Let $U=(T \cap C) \backslash W$.

Assertion 3.5.8. U is B-complete to $S \backslash M$.

Proof. Suppose $u \in U$ has an $R \backslash B$-neighbor s in $S \backslash M$. Since $u \in U$, there exists $m \in M$ such that $u m$ is in $E(B \backslash R)$. Now $u-c-s-m-u$ is a C_{4} in $B(u c \in E(B)$ by Assertion 3.5.4; cs $\in E(B)$ because $s \notin M$; and $s m \in E(B)$ because $s, m \in S$), a contradiction.

We claim that $D=W \cup M \cup(T \cap Q)$ is a weak clique cutset in R. By Assertion 3.5.7, $W \cup M \cup(T \cap Q)$ is an R-clique. By Assertion 3.5.8, $U \cup\{c\}$ is B-complete to $S \backslash M$. Now since $P \backslash\{c\} \subseteq S$, and $C \backslash(U \cup W) \subseteq S$, it follows that $V(G) \backslash D \subseteq(S \backslash M) \cup U \cup\{c\}$, and the claim follows. But then V is obedient by Lemma 3.2, a contradiction. This proves Theorem 3.5.

4. Proof of Theorem 1.10

In this section we prove Theorem 1.10. Let $L=\omega(R)$ and $K=\omega(B)$. Suppose that Theorem 1.10 is false, and let B and R be two graphs with vertex set V such that the pair (B, R) is not additive, and

- both B, R are \mathcal{F}-free, and
- at least one of B and R is C_{5}-free, and
- at least one of B and R is P_{0}^{c}-free, and
- B is P_{0}^{c}-free or R is \mathcal{P}-free, and
- R is P_{0}^{c}-free, or B is \mathcal{P}-free, and
- B and R are chosen with $|V|$ minimum subject to the conditions above.

Let $|V|=n$. By Lemma 1.9, the minimality of $|V|$ implies that $G(B, R)$ is a complete graph with vertex set V, and $K+L<n$. Consequently, neither of B, R is a complete graph, and so, since every pair of vertices of V is adjacent in $G(B, R)$, we deduce that $K \geq 2$, and $L \geq 2$.
Lemma 4.1. $n \geq 6$
Proof. Suppose $n \leq 5$. Since both $K \geq 2$, and $L \geq 2$, and $K+L<n$, it follows that $|V|=5$, and $K=L=2$. But then both B and R are isomorphic to C_{5}, a contradiction. This proves Lemma 4.1.
Lemma 4.2. $K+L=n-1$ and for every $v \in V, \omega(B \backslash v)=K$ and $\omega(R \backslash v)=L$.
Proof. Let $v \in V$. Then it follows from the minimality of $|V|$, that

$$
n-1 \leq \omega(B \backslash v)+\omega(R \backslash v) \leq K+L \leq n-1 .
$$

Thus all the inequlities above must be equalities, namely $K+L=n-1, \omega(B \backslash v)=K$ and $\omega(R \backslash v)=L$.

This proves Lemma 4.2.
We assume without loss of generality that $K \geq L$ and hence by Lemmas 4.1 and 4.2 we have $K \geq 3$.

For a graph G and two disjoint subsets X and Y of $V(G)$ with $|X|=|Y|$, we say that X is matched to Y if there is a matching $e_{1}, \ldots, e_{|X|}$ of G, so that for all $i \in\{1, \ldots,|X|\}$, the edge e_{i} has one end in X and the other in Y.
Lemma 4.3. Let K_{1}, K_{2} be B-cliques of size K. Then $K_{1} \backslash K_{2}$ and $K_{2} \backslash K_{1}$ are matched in $R \backslash B$.
Proof. Suppose not. Let $k=\left|K_{1} \backslash K_{2}\right|=\left|K_{2} \backslash K_{1}\right|$. Then by Hall's Theorem [4], there exist $Y \subseteq K_{1} \backslash K_{2}$ and $Z \subseteq K_{2} \backslash K_{1}$ such that $|Z|>k-|Y|$, and Y is $R \backslash B$-anticomplete to Z. Since $G(B, R)$ is a complete graph, it follows that Y is B-complete to Z. But then $\left(K_{1} \cap K_{2}\right) \cup Y \cup Z$ is a clique of size at least $K+1$ in B, contrary to the definition of K. This proves Theorem 4.3.

Lemma 4.3 implies the following:
Lemma 4.4. Let K_{1}, K_{2} be cliques of size K in B. Then $\left|K_{1} \backslash K_{2}\right| \leq 2$.

Proof. Suppose $\left|K_{1} \backslash K_{2}\right| \geq 3$, and let $a_{1}, a_{2}, a_{3} \in K_{1} \backslash K_{2}$ be all distinct. By Lemma 4.3, there exist $b_{1}, b_{2}, b_{3} \in K_{2} \backslash K_{1}$, all distinct, such that the sets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are matched in $R \backslash B$. But then $B \mid\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{2}\right\}$ is a member of \mathcal{F}, a contradiction. This proves Lemma 4.4.

In view of Theorem 4.2, for every $v \in V$ there exists a clique K_{v} of size K in $B \backslash v$.
Lemma 4.5. There exist $u, w \in V$ such that $\left|K_{u} \backslash K_{w}\right|=2$.
Proof. Let $v \in V$. Since $K \geq 2$, there exist distinct vertices $u, w \in K_{v}$. By Lemma 4.4, we may assume that $\left|K_{v} \backslash K_{u}\right|=1$, where $K_{v} \backslash K_{u}=\{u\}$. Let x be the unique vertex of $K_{u} \backslash K_{v}$ (possibly $x=v$). Similarly, we may assume that $\left|K_{v} \backslash K_{w}\right|=1$, and $K_{v} \backslash K_{w}=\{w\}$. Let y be the unique vertex of $K_{w} \backslash K_{v}$ (again, possibly $y=v$). By Lemma $4.3 u x$ is an edge $R \backslash B$, and so u is non-adjacent to x in B. Since $y, u \in K_{w}$, it follows that u is adjacent to y in B; consequently $x \neq y$, and so $x \notin K_{w}$. But now both x and w are in $K_{u} \backslash K_{w}$, and Lemma 4.5 holds.

At this point we fix two vertices $u, w \in V$ as in Lemma 4.5, namely satisfying $\left|K_{u} \backslash K_{w}\right|=$ $\left|K_{w} \backslash K_{u}\right|=2$. Let $K_{u} \cap K_{w}=\left\{v_{3}, \ldots, v_{K}\right\}$, and $K_{i}=K_{v_{i}}(i=3, \ldots, K)$. Let $K_{u} \backslash K_{w}=\left\{x_{1}, x_{2}\right\}$ and $K_{w} \backslash K_{u}=\left\{y_{1}, y_{2}\right\}$. Then $v_{i} \in K_{u} \backslash K_{i}$, and so by Lemma 4.3, there exists $p_{i} \in K_{i} \backslash K_{u}$ such that $v_{i} p_{i}$ is an edge of $R \backslash B$. Consequently, $p_{i} \notin K_{u} \cup K_{w}$. Also by Lemma 4.3, the sets $\left\{x_{1}, x_{2}\right\}$ and $\left\{y_{1}, y_{2}\right\}$ are matched in $R \backslash B$.

Note next that p_{i} is not B-complete to $\left\{x_{1}, x_{2}\right\}$. Otherwise, taking $a_{1}=x_{1}, a_{2}=x_{2}, a_{3}=$ $v_{i}, b_{1}=y_{1}, b_{2}=y_{2}, b_{3}=p_{i}$ shows that $B \mid\left\{x_{1}, x_{2}, y_{1}, y_{2}, v_{i}, p_{i}\right\} \in \mathcal{F}$. Similarly, p_{i} is not B-complete to $\left\{y_{1}, y_{2}\right\}$.

Since p_{i} is not B-complete to $\left\{x_{1}, x_{2}\right\}$ nor to $\left\{y_{1}, y_{2}\right\}$, by Lemma $4.4 p_{i}$ is B-complete to $\left(K_{u} \cap K_{w}\right) \backslash\left\{v_{i}\right\}$. Since $p_{i} v_{i}$ is an edge of $R \backslash B$, it follows that the vertices p_{3}, \ldots, p_{K} are all distinct.

Our next aim is to show that for all $3 \leq i \leq K$, the vertices p_{i} make the same choice of which among x_{1}, x_{2} they are connected to in $R \backslash B$, and similarly for y_{1}, y_{2}. Fix a specific $i \in\{3, \ldots, K\}$, and without loss of generality assume that $p_{i} x_{2}$ and $p_{i} y_{2}$ are both edges of $R \backslash B$. Then $x_{2}, y_{2} \notin K_{i}$, and so, by Lemma 4.4, $K_{u} \backslash K_{i}=\left\{x_{2}, v_{i}\right\}$ and $K_{w} \backslash K_{i}=\left\{y_{2}, v_{i}\right\}$. Consequently,

$$
K_{i}=\left(\left(K_{u} \cap K_{w}\right) \cup\left\{p_{i}, x_{1}, y_{1}\right\}\right) \backslash\left\{v_{i}\right\} .
$$

We next show that the same is true, with the same parameters, for all j between 3 and K. The
Lemma 4.6. For every $j \in\{3, \ldots, K\}$

$$
K_{j}=\left(\left(K_{u} \cap K_{w}\right) \cup\left\{p_{j}, x_{1}, y_{1}\right\}\right) \backslash\left\{v_{j}\right\} .
$$

Proof. By the argument above, applied to j instead of i, we deduce that there exist $k, m \in\{1,2\}$ such that

$$
K_{j}=\left(\left(K_{u} \cap K_{w}\right) \cup\left\{p_{j}, x_{k}, y_{m}\right\}\right) \backslash\left\{v_{j}\right\},
$$

It remains to show that $k=m=1$. Suppose not. Since $x_{1}, y_{1} \in K_{i}$ it follows that $x_{1} y_{1}$ is an edge of B. On the other hand, Lemma 4.3 implies that $x_{1} y_{2}$ and $x_{2} y_{1}$ are edges of $R \backslash B$. Since K_{j} is a clique of B, we deduce that $x_{k} y_{m}$ is an edge of B, and so $k=m=2$. But then $K_{i} \backslash K_{j}=\left\{p_{i}, x_{1}, y_{1}\right\}$, contrary to Lemma 4.4. This proves that $k=m=1$, as desired.

We now write $Y=\left\{x_{1}, y_{1}, v_{3}, \ldots, v_{K}\right\}$ and $Z=\left\{x_{2}, y_{2}, p_{3} \ldots, p_{K}\right\}$.
Lemma 4.7. The following hold:
(1) Z is a clique of size K in $R \backslash B$ and Y is a clique of size K in B.
(2) The pairs $x_{1} y_{2}, x_{2} y_{1}$ and $v_{j} p_{j}$ for $j \in\{3, \ldots, K\}$ are adjacent in $R \backslash B$, and all other pairs $z y$ with $z \in Z$ and $y \in Y$ are adjacent in B.

Proof. To prove 4.7(1) suppose that Z is not a clique of $R \backslash B$. We showed earlier that $\left\{x_{2}, y_{2}\right\}$ is $R \backslash B$-complete to $\left\{p_{3}, \ldots, p_{K}\right\}$, and that p_{3}, \ldots, p_{K} are all distinct. Suppose first that there exist $k, m \in\{3, \ldots, K\}$ such that $p_{k} p_{m}$ is not an edge of $R \backslash B$. Then

$$
X=\left(\left(K_{u} \cap K_{w}\right) \cup\left\{p_{k}, p_{m}, x_{1}, y_{1}\right\}\right) \backslash\left\{v_{k}, v_{m}\right\}
$$

is a clique of size K in B, but $X \backslash K_{u}=\left\{p_{k}, p_{m}, y_{1}\right\}$, contrary to Lemma 4.4. This proves that $\left\{p_{3}, \ldots, p_{K}\right\}$ is a clique of $R \backslash B$. Since $\left\{p_{3}, \ldots, p_{K}\right\}$ is $R \backslash B$-complete to $\left\{x_{2}, y_{2}\right\}$, but $\left\{x_{2}, y_{2}, p_{3}, \ldots, p_{K}\right\}$ is not a clique of $R \backslash B$, it follows that $x_{2} y_{2}$ is not an edge of $R \backslash B$, and therefore x_{2} is adjacent to y_{2} in B. Consequently, $W=\left(K_{u} \cup\left\{y_{2}\right\}\right) \backslash\left\{x_{1}\right\}$ is a clique of size K in B. But now $K_{3} \backslash W=\left\{x_{1}, y_{1}, p_{3}\right\}$, contrary to Lemma 4.4. This proves Lemma 4.7(1).

We now prove the second statement of Lemma 4.7. We have already shown that $x_{1} y_{2}, x_{2} y_{1}$ and $v_{i} p_{i}$ for $i \in\{3, \ldots, K\}$ are adjacent in $R \backslash B$. Next we observe that every other pair (z, y) with $z \in Z$ and $y \in Y$ is contained in at least one of the cliques $K_{u}, K_{v}, K_{3}, \ldots, K_{K}$, and therefore $z y$ is an edge of B.

Next we use the symmetry between B and R in order to obtain more information about maximum cliques in each of them.
Lemma 4.8. $K=L=\frac{n-1}{2}$.
Proof. Theorem 4.7(1) implies that $L \geq K$. But we assumed that $K \geq L$. Thus $K=L=\frac{n-1}{2}$ (the second equality following by Theorem 4.2), and the lemma follows.

It now follows from Lemma $4.7(2)$ and Lemma 4.8 that $V \backslash(Y \cup Z)$ is a set with exactly one vertex. We denote this vertex by v_{R}. Let us recall what we know about Y, Z and v_{R} :

- $V \backslash\left\{v_{R}\right\}=Z \cup Y$, and
- $Z \cap Y=\emptyset$, and
- Z is a clique of size $\frac{n-1}{2}$ in $R \backslash B$, and
- Y is a clique of size $\frac{n-1}{2}$ in B, and
- the vertices of Z can be numbered z_{1}, \ldots, z_{K}, and the vertices of Y can be numbered y_{1}, \ldots, y_{K}, such that for $i, j \in\{1, \ldots, K\}$, the pair $z_{i} y_{j} \in B$ if and only if $i \neq j$.
Exchanging the roles of R and B, we deduce also that there exists a vertex $v_{B} \in V$ and sets Y^{\prime} and Z^{\prime} such that
- $V \backslash\left\{v_{B}\right\}=Z^{\prime} \cup Y^{\prime}$, and
- $Z^{\prime} \cap Y^{\prime}=\emptyset$, and
- Y^{\prime} is a clique of size $\frac{n-1}{2}$ in $B \backslash R$, and
- Z^{\prime} is a clique of size $\frac{n-1}{2}$ in R, and
- the vertices of Z^{\prime} can be numbered $z_{1}^{\prime}, \ldots, z_{K}^{\prime}$, and the vertices of Y^{\prime} can be numbered $y_{1}^{\prime}, \ldots, y_{K}^{\prime}$, such that for $i, j \in\{1, \ldots, K\}$, the pair $z_{i}^{\prime} y_{j}^{\prime} \in R$ if and only if $i \neq j$.
We now analyze the way v_{R} attaches to Y and Z.
Lemma 4.9. Let $i, j \in\{1, \ldots, K\}$. If v_{R} is B-complete to $\left\{z_{i}, y_{j}\right\}$, then $z_{i} y_{j}$ is an edge of $R \backslash B$.
Proof. Suppose that v_{R} is B-complete to $\left\{z_{i}, y_{j}\right\}$ and $z_{i} y_{j}$ is an edge of B. Then $i \neq j$. Since $\left(Y \cup\left\{v_{R}, z_{i}\right\}\right) \backslash\left\{y_{i}\right\}$ is not an clique of size $K+1$ in B, it follows that there exists $t \in\{1, \ldots, K\} \backslash\{i\}$ such that $v_{R} y_{t}$ is an edge of $R \backslash B$. Then $t \neq j$. But now $B \mid\left\{v_{R}, z_{i}, y_{j}, y_{t}, y_{i}, z_{j}\right\}$ is a member of \mathcal{F}, a contradiction. This proves Lemma 4.9.

We are finally ready to establish the existence of certain induced subgraphs in B and R.
Lemma 4.10. At least one of the following holds:
(1) B contains P_{0}^{c}, or
(2) B contains P_{1} or P_{2}, and v_{R} is $R \backslash B$-complete to Y, or
(3) B contains P_{0}, and there exists $z \in Z$ such that v_{R} is $R \backslash B$-complete to $(Y \cup Z) \backslash\{z\}$.

Proof. Since $Z \cup\left\{v_{R}\right\}$ is not a clique of size $K+1$ in R, it follows that v_{R} has a neighbor in Z in $B \backslash R$. We may assume that $v_{R} z_{1}$ is an edge of $B \backslash R$. Since z_{1} is B-complete to $Y \backslash\left\{y_{1}\right\}$, Lemma 4.9 implies that v_{R} is $R \backslash B$-complete to $Y \backslash\left\{y_{1}\right\}$.

Suppose v_{R} has a neighbor in $Z \backslash\left\{z_{1}\right\}$ in B, say $v_{R} z_{2}$ is an edge of B. Then by Lemma $4.9 v_{R}$ is adjacent in $R \backslash B$ to y_{1}, and so v_{R} is $R \backslash B$-complete to Y. Also, $B \mid\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}, v_{R}\right\}$ is isomorphic to P_{1} if $v_{R} z_{3}$ is an edge of $R \backslash B$, and to P_{2} if $v_{R} z_{3}$ is an edge of B, and the second conclusion of the theorem holds.

So we may assume that v_{R} is $R \backslash B$-complete to $Z \backslash\left\{z_{1}\right\}$. Now if $v_{R} y_{1}$ is an edge of B, then $B \mid\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}, v_{R}\right\}$ is isomorphic to P_{0}^{c}, and the first conclusion of the theorem holds; and if $v_{R} y_{1}$ is an edge of $R \backslash B$, then $B \mid\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}, v_{R}\right\}$ is isomorphic to P_{0}, v_{R} is $R \backslash B$-complete to $(Y \cup Z) \backslash\left\{z_{1}\right\}$, and the third conclusion of the theorem holds. This proves Lemma 4.10

Applying 4.10 with the roles of R and B reversed, we deduce that either
(1) R contains P_{0}^{c}, or
(2) R contains P_{1} or P_{2}, and v_{B} is $B \backslash R$-complete to Z^{\prime}, or
(3) R contains P_{0}, and there exists $y^{\prime} \in Y^{\prime}$, such that v_{B} is $B \backslash R$-complete to $\left(Y^{\prime} \cup Z^{\prime}\right) \backslash\left\{y^{\prime}\right\}$.

To complete the proof of Theorem 1.10, we now analyze the possible conclusions of 4.10. Observe first that by Lemma 4.10 , each of B, R either contains P_{0}^{c}, or contains a member of \mathcal{P}. Thus, if the first conclusion of Lemma 4.10 holds for at least one of B, R (in other words, one of B, R contains P_{0}^{c}), we get a contradiction to the third, fourth or fifth assumption at the start of this section.

So we may assume that either the second or the third conclusion of Lemma 4.10 holds for B, and the same for R. Therefore v_{R} is $R \backslash B$-complete to Y. We claim that every vertex of V has at least two neighbors in $R \backslash B$. Since by Lemmas 4.1 and $4.8|Y|,|Z| \geq 3$, it follows that v_{R} has at least two neighbors in Y in $R \backslash B$, and that every vertex of Z has at least two neighbors in Z in $R \backslash B$. Since v_{R} is $R \backslash B$-complete to Y, and every vertex of Y has a neighbor in Z in $R \backslash B$, the claim follows. Similarly, every vertex of V has at least two neighbors in $B \backslash R$.

Next we observe that if the third conclusion of Lemma 4.10 holds for B, then v_{R} has at most one neighbor in B, and if the third conclusion of Lemma 4.10 holds for R, then v_{B} has at most one neighbor in R. This implies that the third conclusion of Lemma 4.10 does not hold for either B or R, and thus the second conclusion of Lemma 4.10 holds for both B and R; consequently each of B and R contains P_{1} or P_{2}. But both P_{1} and P_{2} contain C_{5}, contrary to the second assumption at the start of this section. This completes the proof of Theorem 1.10.

5. Further problems

As we have already mentioned, Tardos' theorem was extended in [1] to pairs of chordal graphs on the same vertex set. With some trepidation we venture to conjecture that the theorem is valid also for a pair of graphs as in Theorem 1.10:

Conjecture 5.1. Let B be a $\left\{C_{4}, C_{5}\right\}$-free graph and let R be a C_{4}-free graph with $V(B)=V(R)=$ V. Let k be the maximal size of a stable set in $G(B, R)$. Then there exist k cliques C_{1}, \ldots, C_{k} in B and k cliques $C_{k+1}, \ldots, C_{2 k}$ in R such that $V=\bigcup_{i=1}^{2 k} C_{i}$.

It is tempting to ask also about the chromatic number of the union of two graphs. For a graph G, we denote its chromatic number by $\chi(G)$. Let us restrict ourselves in this case to chordal graphs:

Conjecture 5.2. If B and R are chordal graphs on the same vertex set then $\chi(G(B, R)) \leq$ $\chi(B)+\chi(R)$.

Using the simplicial decomposition of chordal graphs, it is easy to show that in a chordal graph G the average degree of the vertices does not exceed $2(\omega(G)-1)=2(\chi(G)-1)$. From this follows "half" of the conjecture, namely: if B and R are chordal then $\chi(G(B, R)) \leq 2(\chi(B)+\chi(R))$.

6. Acknowledgment

We would like to thank Irena Penev for her careful reading of en early version of this manuscript, and for her helpful suggestions regarding its presentation.

References

[1] E. Berger, KKM-A Topological approach for trees. Combinatorica 25(2004), 1-18.
[2] S. Foldes and P.L. Hammer, Split graphs, University of Waterloo, CORR 76-3, March 1976.
[3] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journ. Combin. Th., Ser. B, 16(1982), 47-56.
[4] P. Hall, "On Representatives of Subsets", J. London Math. Soc. 10 (1935), 26-30.
[5] G. Tardos, Transversals of 2-intervals, a topological approach, Combinatorica 15(1995), 123-134.
Department of Mathematics, Technion
E-mail address, Ron Aharoni: raharoni@gmail.com
Department of Mathematics, Technion
E-mail address, Eli Berger: berger@math.haifa.ac.il
Department of IEOR, Columbia
E-mail address, Maria Chudnovsky: mchudnov@columbia.edu
Department of Applied and Computational Mathematics, CalTech
E-mail address, Juba Ziani: jziani@caltech.edu

[^0]: The research of the first author was supported by BSF grant no. 2006099 and by the Discount Bank Chair at the Technion.

 The research of the second author was supported by BSF grant no. 2006099.
 The research of the third author was supported by BSF grant no. 2006099, and NSF grants DMS-1001091 and IIS-1117631.

