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Abstract. Let B and R be two simple graphs with vertex set V , and let G(B, R) be the simple
graph with vertex set V , in which two vertices are adjacent if they are adjacent in at least one of B
and R. For X ⊆ V , we denote by B|X the subgraph of B induced by X; let R|X and G(B, R)|X
be defined similarly. A clique in a graph is a set of pairwise adjacent vertices. A subset U ⊆ V is
obedient if U is the union of a clique of B and a clique of R. Our first result is that if B has no
induced cycles of length four, and R has no induced cycles of length four or five, then every clique
of G(B, R) is obedient. This strengthens a previous result of the second author, stating the same
when B has no induced C4 and R is chordal.

The clique number of a graph is the size of its maximum clique. We say that the pair (B, R) is
additive if for every X ⊆ V , the sum of the clique numbers of B|X and R|X is at least the clique
number of G(B, R)|X. Our second result is a sufficient condition for additivity of pairs of graphs.

1. Introduction

Throughout this paper B (for “Blue”) and R (for “Red”) are two graphs (identified with their
edge sets) on the same vertex set V . If in this setting B ∪R is a clique, then it is not necessarily
the case that V is the union of a clique in B and a clique in R. It is not even always true that
ω(B) + ω(R) ≥ |V | (where, as usual, ω(G) is the maximal size of a clique in G). For example, if B
is the random graph and R is its complement, then ω(B) = ω(R) = O(log |V |). If B is the disjoint
union of k cliques of size k each, and R is its complement, then |V | = k2 while ω(B) = ω(R) = k,
and in this case B does not contain an induced C4 and R does not contain induced cycles of length
larger than 4 (but it does contain induced C4s). In this paper we study sufficient conditions on B
and R for the above two properties to hold. Namely, we shall find conditions implying that a clique
in G(B,R) is the vertex union of a clique in B and a clique in R, and conditions implying that the
sum of the clique numbers of B and of R is the clique number of their union.

For B and R as above, we denote the union of B and R by G(B,R), so two vertices in V are
adjacent in G(B,R) if they are adjacent in at least one of B and R.

Definition 1.1. We say that a subset U ⊆ V is obedient if there exists an R-clique X and a
B-clique Y such that U = X ∪ Y . We say that it is size obedient if |U | ≤ ω(B|U) + ω(R|U).

In the above definition of obedience we may clearly assume that X ∩ Y = ∅. We then say that
the pair (X,Y ) is a good partition of U .

The original motivation for our study came from a theorem of Tardos, on 2-intervals. A 2-interval
is the union of 2 intervals, each on a separate line. In [5] Tardos proved the following:

Theorem 1.2. If F is a finite family of 2-intervals, sharing the same pair of lines, then τ(F ) ≤
2ν(F ). Moreover, if ν(F ) = k then there exist k points on the first line and k points on the second
line, that together meet all 2-intervals in F .
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In the language of union of graphs, Theorem 1.2 is:

Theorem 1.3. Let B and R be two interval graphs on the same vertex set V , and let k be the
maximal size of a stable set in G(B,R). Then there exist k cliques C1, . . . , Ck in G and k cliques
Ck+1, . . . , C2k in R such that V =

⋃2k
i=1Ci.

This result is non-trivial even for k = 1. In [1], the second author of this paper generalized the
result of Tardos to chordal graphs. The case k = 1 of this result is:

Theorem 1.4. Let B and R be two chordal graphs on the same vertex set V . If G(B,R) is a
complete graph, then V is obedient.

The methods used in [5] and [1] are topological. However, for k = 1 a combinatorial proof is
known. This proof yields the stronger result, for whose formulation we need some further definitions.
A stable set of G is a clique of Gc, the complement of G. For a subset X of V (G), the graph G|X
is the subgraph of G induced by X. For a graph H, we say that G contains H if some induced
subgraph of G is isomorphic to H. If G does not contain H, then G is H-free. If H is a family of
graphs, then G is H-free if G is H-free for every H ∈ H.

Let k ≥ 3 be an integer. We denote by Ck the cycle on k vertices. For a graph G, if v1, . . . , vk ∈
V (G) are distinct vertices such that vivj ∈ E(G) if and only if |i− j| = 1 or |i− j| = k − 1, we say
that v1 − . . .− vk − v1 is a Ck in G. A graph is chordal if no induced subgraph of it is a cycle on at
least four vertices.

The combinatorial proof of Theorem 1.4 yields that it suffices to assume that one of the graphs
is chordal, and the other is C4-free. The main result in the first part of the paper is a further
strengthening of this fact:

Theorem 1.5. Let B and R be two graphs on the same vertex set V , such that B is {C4, C5}-free,
and R is C4-free. If G(B,R) is a complete graph, then V is obedient.

A graph is called split if its vertex set can be split into a clique and an indpendent set. Theorem
1.5 is a generalization of the well-known characterization of split graphs [2]: a graph is split if and
only if no induced subgraph of it is a cycle on four or five vertices, or a pair of disjoint edges (the
complement of a 4-cycle). .

A corollary of Theorem 1.5 is:

Theorem 1.6. Let B and R be two graphs on the same vertex set V , such that B is {C4, C5}-free,
and R is C4-free. Then ω(G(B,R)) ≤ ω(B) + ω(R).

Here is a symmetric formulation of Theorem 1.6:

Theorem 1.7. Let B and R be two graphs with vertex set V , and suppose that some clique in
G(B,R) is not obedient. Then either

• one of B,R contains C4, or
• both B and R contain C5.

We remark that neither conclusion of Theorem 1.7 is redundant, namely each may occur while
the other does not. Let B|X be isomorphic to C4 for some X ⊆ V , and R|X = Bc|X; then X is
a clique in G(B,R), and yet X cannot be expressed as the union of a clique of B and a clique of
R. Similarly, let B|X be isomorphic to C5 for some X ⊆ V , and R|X = Bc|X (and thus R|X is
also isomorphic to C5); then again X is a clique in G(B,R), and yet X cannot be expressed as the
union of a clique of B and a clique of R. Thus Theorem 1.7 provides an answer to the question: for
which pairs (B,R) every clique of G(B,R) is obedient?

Our second goal is to give sufficient conditions concerning ω(G(B.R)).
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Definition 1.8. The pair (B,R) is additive if for every X ⊆ V ,

ω(B|X) + ω(R|X) ≥ ω(G(B,R)|X).

The following is immediate:

Theorem 1.9. Let B and R be two graphs with vertex set V . The pair (B,R) is additive if and
only if every clique in G(B,R) is size obedient.

Note that if B|X is isomorphic to C4 for some X ⊆ V , and R|X = Bc|X, then ω(B|X) =
ω(R|X) = 2, and thus

ω(B|X) + ω(R|X) = |X|.
So, additivity does not imply obedience, and our goal here is to modify the first conclusion of 1.7,
in order to obtain a characterization of additive pairs.

For a graph G and two disjoint subsets X and Y of V (G), we say that X is G-complete (G-
anticomplete) to Y if every vertex of X is adjacent (non-adjacent) to every vertex of Y . If |X| = 1,
say X = {x}, we write “x is G-complete (G-anticomplete) to Y ” instead of “{x} is G-complete
(G-anticomplete) to Y ”. When there is no risk of confusion, we write “complete” (“anticomplete”)
instead of “G-complete” (“G-anticomplete”).

Let F be the family of graphs with vertex set {a1, a2, a3, b1, b2, b3} where {a1, a2, a3} and
{b1, b2, b3} are cliques, ai is non-adjacent to bi for i ∈ {1, 2, 3}, and the remaining adjacencies
are arbitrary.

Let P0 be the graph with vertex set {a1, a3, a3, b1, b2, b3, c} where
• {a1, a2, a3} is a clique,
• {b1, b2, b3} is a stable set,
• for i ∈ {1, 2, 3}, bi is non-adjacent to ai, and complete to {a1, a2, a3} \ {ai},
• c is adjacent to b1, and has no other neighbors in P0.

Let P1 be the graph obtained from P0 by adding the edge cb2, and let P2 be the graph obtained
from P1 by adding the edge cb3. Let P = {P0, P1, P2}.

Figure 1. P0 Figure 2. P1 Figure 3. P2

We can now state our second result.

Theorem 1.10. Let B and R be two graphs with vertex set V . Then at least one of the following
holds:

(1) the pair (B,R) is additive
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(2) one of B,R contains a member of F
(3) both B and R contain C5

(4) both B and R contain P c
0

(5) B contains P c
0 , and R contains a member of P

(6) R contains P c
0 , and B contains a member of P.

Let us show that, similarly to the state of affairs in Theorem 1.7, all conclusions of Theorem 1.10
are necessary. Taking B to be a member of F (or C5), and taking R = Bc, we construct a pair that
is not additive, and that satisfies only (1) (or only (2)). Next, let B = P c

0 , and let R be the graph
obtained from P0 = Bc by adding the edge ca1; then (B,R) is not additive, and it only satisfies (3).
Finally, let B = P c

0 , and let R be the graph obtained from Bc by adding none, one or both of the
edges cb2 and cb3; then the pair (B,R) is not additive, and it only satisfies (4). Clearly, (5) is just
(4) with the roles of R and B reversed.

2. Pairs of chordal - C4-free graphs

We start with a simple proof of Theorem 1.5 in the case that B is chordal.

Theorem 2.1. Let B,R be two graphs on the same vertex set V , such that B is chordal and R is
C4-free. If G(B,R) is a complete graph, then V is obedient.

Proof. By a theorem of [3], a graph is chordal if and only if it is the intersection graph of a collection
of subtrees of some tree. Let T be a tree, and let (tv : v ∈ V ) be subtrees of T such that uv ∈ E(B)
if and only of V (tu) ∩ V (tv) 6= ∅. For x ∈ V (T ) and an edge e = xy ∈ E(T ) containing it, write
Vx = {v ∈ V : x ∈ V (tv)} and Ve = {v ∈ V : e ∈ E(tv)}. Note that Vx is a B-clique. Taking again
e = xy, let Vxe denote the set of all v ∈ V such that tv is contained in the connected component
of T − x containing y. Similarly, let Vex denote the set of all v ∈ V such that tv is contained in
the connected component of T − e containing x. We also define Vex̄ = V \ (Ve ∪ Vex) = Vey and
Vxē = V \ (Vx ∪ Vxe) =

⋃
x∈e′ 6=e Vxe′ . Note that Vex̄ = Vxe. We write x ; e if Vxē is an R-clique and

write e ; x if Vex̄ is an R-clique.

Assertion 2.1.1. Every vertex x ∈ V (T ) belongs to some edge e ∈ E(T ) such that x ; e. For
every edge e = xy ∈ E(T ) either e ; x or e ; y.

Proof. Let e = xy ∈ E(T ) and assume for contradiction that neither Vex nor Vey is an R-clique. Let
a, b ∈ Vex and c, d ∈ Vey satisfy ab, cd 6∈ E(R). Then a− c− b− d− a is a C4 in R.

Similarly, let x ∈ V (T ) and let e1, . . . , ed be the edges containing it. By the same argument as
above, all but at most one of the sets Vxe1 , . . . , Vxed

are cliques in R. Therefore x ; ei for some
i = 1, . . . , d. �

Using Assertion 2.1.1 we can choose a vertex x0 ∈ V (T ) and construct a walk x0 ; e1 ; x1 ;

e2 ; x2 ; e3 ; x3 ; . . .. Since T is finite and has no cycles, the walk must turn back at some
stage, i.e., there exist some vertex x ∈ V (T ) and edge e = xy ∈ E(T ) such that x ; e ; x.
This means that Vxē and Vex̄ = Vxe are R-cliques. Since Vxē is R-complete to Vxe, the union
D = Vxē ∪ Vxe = V \ Vx is also an R-clique. Taking the B-clique C = Vx we get V = C ∪D. �

3. Proof of Theorem 1.7

Let B \ R be the graph with vertex set V , such that two vertices are adjacent in B \ R if and
only if they are adjacent in B and non-adjacent in R. The graph R \B is defined similarly.

Let G be a graph. A set C ⊂ V (G) is a cutset if there exist disjoint P,Q ⊆ V (G) such that
V (G) \ C = P ∪ Q, and P is anticomplete to Q in G. We say that C is a clique cutset if it is a
cutset, and C is a clique of G.

We start with the following easy observation:
4



Lemma 3.1. Let B,R be C4-free graphs with vertex set V , let C be a cutset of B \R, and let P,Q
be as in the definition of a cutset. If G(B,R) is a complete graph then the following hold:

(1) One of P and Q is an R-clique.
(2) NR(c) ∩Q is an R-clique for every c ∈ C with (NB(c) \NR(c)) ∩ P 6= ∅.

(Here and below, if v is a vertex in a graph G we denote by NG(v) the set of neighbors of v in G.)

Proof. Since G(B,R) is a complete graph, it follows that P is R-compelte to Q. If (1) fails, then
there exist vertices x, y ∈ P and u, v ∈ Q such that xy and uv are edge of B \ R. But now
x − y − u − v − x is a C4 in R, a contradiction. If (2) fails, then there exist x ∈ P and u, v ∈ Q
such that xc, uv are edges of B \R, and so x− u− c− v − x is a C4 in R, again a contradiction.
This proves the theorem. �

A weak clique cutset in B is a clique C of B that is a cutset in B \R. Note that a clique cutset
of B is in particular a weak clique cutset, but the converse need not be true. Weak clique cutsets
are useful to us because of the following:

Lemma 3.2. Let B and R be C4-free graphs with vertex set V , and assume that every proper subset
U ⊂ V is obedient. Assume also that G(B,R) is a complete graph. If there is a weak clique cutset
in B (or in R), then V is obedient.

Proof. Let C,P,Q be as in the definition of a weak clique cutset in B, and assume that C is minimal
with these properties. Since G(B,R) is a complete graph, it follows that P is R-complete to Q. The
minimality of C implies that for every c ∈ C we have (NB(c) \NR(c)) ∩ P 6= ∅, for otherwise we
could move c to Q. Similarly, (NB(c) \NR(c))∩Q 6= ∅. By Lemma 3.1(1), we may assume that P is
an R-clique. By the induction hypothesis V \ P is obedient, namely there exist X,Y ⊆ V such that
X ∪ Y = V \ P , X is a B-clique, and Y is an R-clique; let X and Y be chosen with Y ∩C minimal.

We may assume that (X,Y ∪ P ) is not a good partition of V , for otherwise the theorem holds.
This implies that there exists p ∈ P such that (NB(p)\NR(p))∩Y 6= ∅. Let Z = (NB(p)\NR(p))∩Y .
Since P is R-complete to Q, it follows that Z ⊆ C. Choose z ∈ Z with (NR(z) \NB(z)) ∩ (Q ∩X)
minimal. Let N = (NR(z) \NB(z)) ∩ (Q ∩X). Since z ∈ Y , and Y is an R-clique, we deduce that
z is R-compelte to N ∪ Y . Therefore, Lemma 3.1(2) implies that N ∪ (Y ∩Q) is an R-clique.

By the minimality of Y ∩C, the pair (X \N)∪{z}, (Y \ {z})∪N is not a good partition of V \P .
Since C is a B-clique, so is (X \N) ∪ {z}. This implies that (Y \ {z}) ∪N is not an R-clique, and
since Y and N are R-cliques there exists y ∈ (C ∩ Y ) \ {z} and n ∈ N such that yn ∈ E(B \ R).
Since p − y − z − n − p is not a C4 in R, it follows that y ∈ Z. By the choice of z, there exists
m ∈ Q ∩X such that my ∈ E(R \B), and mz ∈ E(B). But now y − z −m− n− y is an induced
C4 in B, a contradiction. This proves Lemma 3.2. �

Remark 3.3. Since a chordal graph is either complete or admits a clique cutset (say, the set of
neighbors of a simplicial vertex), Lemma 3.2 yields another proof of Theorem 2.1.

Lemma 3.4. Let B and R be C4-free graphs with vertex set V , and assume that every proper subset
U of V is obedient. Assume also that B is C5-free. Let v1 − v2 − v3 − v4 − v5 − v1 be a C5 in R,
where v1v2, v3v4 ∈ E(R \B). Then V is obedient.

Proof. Since v1 − v2 − v3 − v4 − v5 − v1 is a C5 in R, it follows that all edges of the cycle v1 − v3 −
v5 − v2 − v4 − v1 belong to E(B \R). Then v2v3 ∈ E(R \B), since otherwise v1 − v4 − v2 − v3 − v1

is a C4 in B. Since B is C5-free, it follows that at least one of the edges v1v5, v4v5 belongs to E(B).
By symmetry we may assume that v1v5 ∈ E(B). Since v1 − v4 − v2 − v5 − v1 is not an induced C4

in B, it follows that v4v5 ∈ E(B).
We now observe that there is a unique good partition of {v1, .., v5}, namely the B-clique {v4, v5, v1}

and the R-clique {v2, v3}. Let u ∈ V \{v1, . . . , v5}. Note that the set {u, v1, . . . , v5} is obedient. This
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can be seen by exhaustive search. Another way to see this is to note that G|{(u, v1, . . . , v5} is not
isomorphic to C6 and does not contain C4 or C5, and is therefore chordal, so the set {u, v1, . . . , v5}
is obedient by Lemma 2.1. This implies that every vertex of V \ {v1, .., v5} is either R-complete to
{v2, v3} or B-complete to {v1, v4, v5}.

Let A be the set of vertices in V \ {v1, .., v5} that are not R-complete to {v2, v3}. Then A is
B-complete to {v1, v4, v5}. We claim that A is a B-clique. Assume for a contradiction that there
exist two distinct vertices u, v in A such that uv 6∈ E(B). Then each of u and v is not R-complete
to {v2, v3}. By symmetry we may assume that uv2 6∈ E(R). If vv2 6∈ E(R) then v−v2−u−v1−v is
a C4 in B, a contradiction. Thus vv2 ∈ E(R), and consequently vv3 6∈ E(R). Exchanging the roles
of v2 and v3 we deduce that uv3 ∈ E(R). But now u− v − v2 − v3 − u is a C4 in R, a contradiction.
This proves the claim that A is a B-clique.

Since no vertex of A is R-complete to {v2, v3}, it follows that A is B-complete to {v1, v4, v5},
and so the claim of the previous paragraph implies that A ∪ {v1, v4, v5} is a B-clique. Let Z =
V \ (A ∪ {v1, v4, v5}). If Z = {v2, v3} then A ∪ {v1, v4, v5}, Z is a good partition of V , and so V is
obedient. Thus we may assume that Z \ {v2, v3} 6= ∅. Since {v2, v3} is R-complete to Z \ {v2, v3},
it follows that A ∪ {v1, v4, v5} is a weak clique cutset in B, and hence V is obedient by Lemma 3.2.
This proves Lemma 3.4. �

We can now prove Theorem 1.7, which we restate:

Theorem 3.5. Let B and R be two graphs with vertex set V , and suppose that some clique of
G(B,R) is not obedient. Then either

• one of B,R contains C4, or
• both B and R contain C5.

Proof. Suppose that the theorem is false, and let B,R be graphs with vertex set V , such that some
clique of G(B,R) is not obedient, and

• both B and R are C4-free, and
• at least one of B and R is C5-free.

We may assume that subject to these conditions V,B,R and G(B,R) are chosen with |V | minimum.
Then G(B,R) is a complete graph, and so every pair of vertices of V is an edge of at least one of
B,R. The minimality of |V | implies that V is not obedient, but U is obedient for every proper
subset U of V .

Let C be a cutset of B \R, and let P,Q be as in the definition of a cutset. Then P is R-compelte
to Q. We may assume that C is chosen so that the number of edges in (R \B)|C is minimum. We
may also assume that C is a minimal cutset of B \R, which implies that for every c ∈ C, the sets
NB\R(c) ∩ P and NB\R(c) ∩Q are both non-empty.

By Lemma 3.1(1) we may assume that P is an R-clique. Let Z be the set of vertices of C that
have an R \ B-neighbor in C. By Lemma 3.2 Z 6= ∅. Let z ∈ Z be with NB\R(z) ∩ P minimal
(which is the same as saying that NR(z) ∩ P is maximal). Let N = NB\R(z) ∩ P . Let y ∈ Z satisfy
zy ∈ E(R \B).

Assertion 3.5.1. y is B \R-complete to N .

Proof. Assume that there exists a vertex n ∈ N such that yn ∈ E(R). By the minimality property
of z, there exists a vertex m ∈ NB\R(y) \ NB\R(z). Then y − z − m − n − y is a C4 in R, a
contradiction. �

Assertion 3.5.2. N is B-complete to C.

Proof. Suppose that there exist x ∈ C and n ∈ N such that xn ∈ R \ B. Since z − x− y − n− z
is not a C4 in B, and since, by Assertion 3.5.1, zn, yn belong to E(B) (in fact, to E(B \ R)), it
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follows that at least one of xz, xy is in E(R \B). This implies, in particular, that x ∈ Z. By the
minimality of z, the fact that xn ∈ E(R) implies that there exists p ∈ P such that xp ∈ E(B \R)
and zp ∈ E(R). Since x− n− p− z − x is not a C4 in R, it follows that xz ∈ E(B \R) (recall that
pn ∈ E(R) since P is an R-clique). Therefore, since x− y − n− z − x is not a C4 in B, we deduce
that xy ∈ E(R \B). Since n− p− y − x− n is not a C4 in R, it follows that yp ∈ E(B \R).

Summarizing the information in the last paragraph, we see that p− n− x− y − z − p is a C5 in
R, containing two disjoint edges nx, yz ∈ E(R \B). Consequently, B is C5-free, and so Lemma 3.4
implies that V is obedient, a contradiction. �

Assertion 3.5.3. P = N .

Proof. Suppose not. Then (C \ {z})∪N is a cutset in B \R (since P \N is R-complete to Q∪{z}).
Now, since N is B-complete to X, this contradicts the minimality of the number of edges of
(R \B)|C. �

By the minimality of z, and the fact that N is B-complete to C, Assertion 3.5.3 implies:

Assertion 3.5.4. P is B \R-complete to Z, and P is B-complete to C.

Assertion 3.5.5. P is a B-clique.

Proof. Suppose not, and let u, v ∈ P such that uv ∈ E(R \B). Then u− z− v− y− u is a C4 in B,
a contradiction. �

So far we focused mainly on the edges with ends in C ∪ P . We now switch our attention to the
edges with ends in C ∪ Q. Let z′ ∈ Z be such that N ′ = NB\R(z′) ∩ Q is minimal. Let y′ ∈ Z
satisfy y′z′ ∈ E(R \B).

Let c ∈ P . Let (S, T ) be a good partition of V \ {c} where S is a B-clique and T is an R-clique.
Since Z is not a B-clique, Z ∩ T 6= ∅. Since P is B \R-complete to Z, this implies that P \ {c} ⊆ S.
Let M be the set of vertices m ∈ Q ∩ S such that cm ∈ E(R \B).

Assertion 3.5.6. M ∩N ′ = ∅, and therefore z′ is R-complete to M .

Proof. It is enough to prove that M ∩N ′ = ∅. Assume that there exists an element n ∈ M ∩N ′.
Since n − z′ − c − y′ − n is not a C4 in B, it follows that y′n ∈ E(R \ B). By the minimality
property of z′ it follows that there exists q ∈ Q \ N ′ such that y′q ∈ E(B \ R) and z′q ∈ E(R).
Since z′ − y′ − n − q − z′ is not a C4 in R, it follows that qn ∈ E(B \ R). By Assertion 3.5.3,
cy′, cz′ ∈ E(B \ R). Now n − c − q − z′ − y′ − n is a C5 in R. Therefore B is C5-free. Since
cn, y′z′ ∈ E(R \B), Lemma 3.4 implies that V is obedient, a contradiction. �

Assertion 3.5.7. M ∪ (T ∩Q) is an R-clique, then V is obedient.

Proof. Suppose that a, b ∈M ∪ (T ∩Q) and ab ∈ E(B \R). Since T is an R-clique, we may assume
that a ∈M , and hence by Assertion 3.5.6 az′ ∈ R. Since Z is B \R-compelte to P , 3.1 (2) implies
that NR(z′) ∩Q is an R-clique, and therefore b ∈ T ∩Q, and z is z′b ∈ E(B \ R). Consequently,
z′ ∈ S. Since y′z′ ∈ E(R \ B), we deduce that y′ ∈ T . Since both y′ and b are in T , it follows
that y′b ∈ E(R). Since y′ − b − a − c − y′ is not a C4 in R, it follows that ay′ ∈ E(B \ R). Now
c− b− y′− z′−a− c is a C5 in R, and so B is C5-free. Since ca, y′z′ ∈ E(R \B), Lemma 3.4 implies
that V is obedient, a contradiction. �

Let W be the set of vertices in C ∩ T that are R-complete to M . Since by Assertion 3.5.7
M ∪ (T ∩Q) is an R-clique, it follows that W ∪M ∪ (T ∩Q) is an R-clique. Let U = (T ∩ C) \W .

Assertion 3.5.8. U is B-complete to S \M .
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Proof. Suppose u ∈ U has an R \B-neighbor s in S \M . Since u ∈ U , there exists m ∈M such that
um is in E(B \R). Now u− c− s−m− u is a C4 in B (uc ∈ E(B) by Assertion 3.5.4; cs ∈ E(B)
because s 6∈M ; and sm ∈ E(B) because s,m ∈ S), a contradiction. �

We claim that D = W∪M∪(T∩Q) is a weak clique cutset in R. By Assertion 3.5.7, W∪M∪(T∩Q)
is an R-clique. By Assertion 3.5.8, U ∪ {c} is B-complete to S \M . Now since P \ {c} ⊆ S, and
C \ (U ∪W ) ⊆ S, it follows that V (G) \D ⊆ (S \M) ∪U ∪ {c}, and the claim follows. But then V
is obedient by Lemma 3.2, a contradiction. This proves Theorem 3.5. �

4. Proof of Theorem 1.10

In this section we prove Theorem 1.10. Let L = ω(R) and K = ω(B). Suppose that Theorem 1.10
is false, and let B and R be two graphs with vertex set V such that the pair (B,R) is not additive,
and

• both B,R are F-free, and
• at least one of B and R is C5-free, and
• at least one of B and R is P c

0 -free, and
• B is P c

0 -free or R is P-free, and
• R is P c

0 -free, or B is P-free, and
• B and R are chosen with |V | minimum subject to the conditions above.

Let |V | = n. By Lemma 1.9, the minimality of |V | implies that G(B,R) is a complete graph with
vertex set V , and K +L < n. Consequently, neither of B,R is a complete graph, and so, since every
pair of vertices of V is adjacent in G(B,R), we deduce that K ≥ 2, and L ≥ 2.

Lemma 4.1. n ≥ 6

Proof. Suppose n ≤ 5. Since both K ≥ 2, and L ≥ 2, and K + L < n, it follows that |V | = 5,
and K = L = 2. But then both B and R are isomorphic to C5, a contradiction. This proves
Lemma 4.1. �

Lemma 4.2. K + L = n− 1 and for every v ∈ V , ω(B \ v) = K and ω(R \ v) = L.

Proof. Let v ∈ V . Then it follows from the minimality of |V |, that

n− 1 ≤ ω(B \ v) + ω(R \ v) ≤ K + L ≤ n− 1 .

Thus all the inequlities above must be equalities, namely K + L = n − 1, ω(B \ v) = K and
ω(R \ v) = L.

This proves Lemma 4.2. �

We assume without loss of generality that K ≥ L and hence by Lemmas 4.1 and 4.2 we have
K ≥ 3.

For a graph G and two disjoint subsets X and Y of V (G) with |X| = |Y |, we say that X is
matched to Y if there is a matching e1, . . . , e|X| of G, so that for all i ∈ {1, . . . , |X|}, the edge ei
has one end in X and the other in Y .

Lemma 4.3. Let K1,K2 be B-cliques of size K. Then K1 \K2 and K2 \K1 are matched in R \B.

Proof. Suppose not. Let k = |K1 \ K2| = |K2 \ K1|. Then by Hall’s Theorem [4], there exist
Y ⊆ K1 \K2 and Z ⊆ K2 \K1 such that |Z| > k − |Y |, and Y is R \B-anticomplete to Z. Since
G(B,R) is a complete graph, it follows that Y is B-complete to Z. But then (K1 ∩K2) ∪ Y ∪ Z is
a clique of size at least K + 1 in B, contrary to the definition of K. This proves Theorem 4.3. �

Lemma 4.3 implies the following:

Lemma 4.4. Let K1,K2 be cliques of size K in B. Then |K1 \K2| ≤ 2.
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Proof. Suppose |K1 \K2| ≥ 3, and let a1, a2, a3 ∈ K1 \K2 be all distinct. By Lemma 4.3, there exist
b1, b2, b3 ∈ K2 \K1, all distinct, such that the sets {a1, a2, a3} and {b1, b2, b3} are matched in R \B.
But then B|{a1, a2, a3, b1, b2, b2} is a member of F , a contradiction. This proves Lemma 4.4. �

In view of Theorem 4.2, for every v ∈ V there exists a clique Kv of size K in B \ v.

Lemma 4.5. There exist u,w ∈ V such that |Ku \Kw| = 2.

Proof. Let v ∈ V . Since K ≥ 2, there exist distinct vertices u,w ∈ Kv. By Lemma 4.4, we may
assume that |Kv \Ku| = 1, where Kv \Ku = {u}. Let x be the unique vertex of Ku \Kv (possibly
x = v). Similarly, we may assume that |Kv \Kw| = 1, and Kv \Kw = {w}. Let y be the unique
vertex of Kw \ Kv (again, possibly y = v). By Lemma 4.3 ux is an edge R \ B, and so u is
non-adjacent to x in B. Since y, u ∈ Kw, it follows that u is adjacent to y in B; consequently x 6= y,
and so x 6∈ Kw. But now both x and w are in Ku \Kw, and Lemma 4.5 holds. �

At this point we fix two vertices u,w ∈ V as in Lemma 4.5, namely satisfying |Ku \ Kw| =
|Kw \Ku| = 2. Let Ku ∩Kw = {v3, . . . , vK}, and Ki = Kvi (i = 3, . . . ,K). Let Ku \Kw = {x1, x2}
and Kw \Ku = {y1, y2}. Then vi ∈ Ku \Ki, and so by Lemma 4.3, there exists pi ∈ Ki \Ku such
that vipi is an edge of R \B. Consequently, pi 6∈ Ku ∪Kw. Also by Lemma 4.3, the sets {x1, x2}
and {y1, y2} are matched in R \B.

Note next that pi is not B-complete to {x1, x2}. Otherwise, taking a1 = x1, a2 = x2, a3 =
vi, b1 = y1, b2 = y2, b3 = pi shows that B|{x1, x2, y1, y2, vi, pi} ∈ F . Similarly, pi is not B-complete
to {y1, y2}.

Since pi is not B-complete to {x1, x2} nor to {y1, y2}, by Lemma 4.4 pi is B-complete to
(Ku∩Kw)\{vi}. Since pivi is an edge of R\B, it follows that the vertices p3, . . . , pK are all distinct.

Our next aim is to show that for all 3 ≤ i ≤ K, the vertices pi make the same choice of which
among x1, x2 they are connected to in R \B, and similarly for y1, y2. Fix a specific i ∈ {3, . . . ,K},
and without loss of generality assume that pix2 and piy2 are both edges of R \B. Then x2, y2 6∈ Ki,
and so, by Lemma 4.4, Ku \Ki = {x2, vi} and Kw \Ki = {y2, vi}. Consequently,

Ki = ((Ku ∩Kw) ∪ {pi, x1, y1}) \ {vi}.

We next show that the same is true, with the same parameters, for all j between 3 and K. The

Lemma 4.6. For every j ∈ {3, . . . ,K}

Kj = ((Ku ∩Kw) ∪ {pj , x1, y1}) \ {vj}.

Proof. By the argument above, applied to j instead of i, we deduce that there exist k,m ∈ {1, 2}
such that

Kj = ((Ku ∩Kw) ∪ {pj , xk, ym}) \ {vj},
It remains to show that k = m = 1. Suppose not. Since x1, y1 ∈ Ki it follows that x1y1 is an edge
of B. On the other hand, Lemma 4.3 implies that x1y2 and x2y1 are edges of R \B. Since Kj is a
clique of B, we deduce that xkym is an edge of B, and so k = m = 2. But then Ki \Kj = {pi, x1, y1},
contrary to Lemma 4.4. This proves that k = m = 1, as desired. �

We now write Y = {x1, y1, v3, . . . , vK} and Z = {x2, y2, p3 . . . , pK}.

Lemma 4.7. The following hold:

(1) Z is a clique of size K in R \B and Y is a clique of size K in B.
(2) The pairs x1y2, x2y1 and vjpj for j ∈ {3, . . . ,K} are adjacent in R \B, and all other pairs

zy with z ∈ Z and y ∈ Y are adjacent in B.
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Proof. To prove 4.7(1) suppose that Z is not a clique of R \B. We showed earlier that {x2, y2} is
R \B-complete to {p3, . . . , pK}, and that p3, . . . , pK are all distinct. Suppose first that there exist
k,m ∈ {3, . . . ,K} such that pkpm is not an edge of R \B. Then

X = ((Ku ∩Kw) ∪ {pk, pm, x1, y1}) \ {vk, vm}
is a clique of size K in B, but X \ Ku = {pk, pm, y1}, contrary to Lemma 4.4. This proves
that {p3, . . . , pK} is a clique of R \ B. Since {p3, . . . , pK} is R \ B-complete to {x2, y2}, but
{x2, y2, p3, . . . , pK} is not a clique of R\B, it follows that x2y2 is not an edge of R\B, and therefore
x2 is adjacent to y2 in B. Consequently, W = (Ku ∪ {y2}) \ {x1} is a clique of size K in B. But
now K3 \W = {x1, y1, p3}, contrary to Lemma 4.4. This proves Lemma 4.7(1).

We now prove the second statement of Lemma 4.7. We have already shown that x1y2, x2y1 and
vipi for i ∈ {3, . . . ,K} are adjacent in R \ B. Next we observe that every other pair (z, y) with
z ∈ Z and y ∈ Y is contained in at least one of the cliques Ku,Kv,K3, . . . ,KK , and therefore zy is
an edge of B. �

Next we use the symmetry between B and R in order to obtain more information about maximum
cliques in each of them.

Lemma 4.8. K = L = n−1
2 .

Proof. Theorem 4.7(1) implies that L ≥ K. But we assumed that K ≥ L. Thus K = L = n−1
2 (the

second equality following by Theorem 4.2), and the lemma follows. �

It now follows from Lemma 4.7(2) and Lemma 4.8 that V \ (Y ∪ Z) is a set with exactly one
vertex. We denote this vertex by vR. Let us recall what we know about Y,Z and vR:

• V \ {vR} = Z ∪ Y , and
• Z ∩ Y = ∅, and
• Z is a clique of size n−1

2 in R \B, and
• Y is a clique of size n−1

2 in B, and
• the vertices of Z can be numbered z1, . . . , zK , and the vertices of Y can be numbered
y1, . . . , yK , such that for i, j ∈ {1, . . . ,K}, the pair ziyj ∈ B if and only if i 6= j.

Exchanging the roles of R and B, we deduce also that there exists a vertex vB ∈ V and sets Y ′

and Z ′ such that
• V \ {vB} = Z ′ ∪ Y ′, and
• Z ′ ∩ Y ′ = ∅, and
• Y ′ is a clique of size n−1

2 in B \R, and
• Z ′ is a clique of size n−1

2 in R, and
• the vertices of Z ′ can be numbered z′1, . . . , z

′
K , and the vertices of Y ′ can be numbered

y′1, . . . , y
′
K , such that for i, j ∈ {1, . . . ,K}, the pair z′iy

′
j ∈ R if and only if i 6= j.

We now analyze the way vR attaches to Y and Z.

Lemma 4.9. Let i, j ∈ {1, . . . ,K}. If vR is B-complete to {zi, yj}, then ziyj is an edge of R \B.

Proof. Suppose that vR is B-complete to {zi, yj} and ziyj is an edge of B. Then i 6= j. Since
(Y ∪{vR, zi})\{yi} is not an clique of size K+1 in B, it follows that there exists t ∈ {1, . . . ,K}\{i}
such that vRyt is an edge of R \B. Then t 6= j. But now B|{vR, zi, yj , yt, yi, zj} is a member of F ,
a contradiction. This proves Lemma 4.9. �

We are finally ready to establish the existence of certain induced subgraphs in B and R.

Lemma 4.10. At least one of the following holds:
(1) B contains P c

0 , or
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(2) B contains P1 or P2, and vR is R \B-complete to Y , or
(3) B contains P0, and there exists z ∈ Z such that vR is R \B-complete to (Y ∪ Z) \ {z}.

Proof. Since Z ∪ {vR} is not a clique of size K + 1 in R, it follows that vR has a neighbor in Z in
B \R. We may assume that vRz1 is an edge of B \R. Since z1 is B-complete to Y \ {y1}, Lemma
4.9 implies that vR is R \B-complete to Y \ {y1}.

Suppose vR has a neighbor in Z \ {z1} in B, say vRz2 is an edge of B. Then by Lemma 4.9 vR

is adjacent in R \ B to y1, and so vR is R \ B-complete to Y . Also, B|{y1, y2, y3, z1, z2, z3, vR} is
isomorphic to P1 if vRz3 is an edge of R \ B, and to P2 if vRz3 is an edge of B, and the second
conclusion of the theorem holds.

So we may assume that vR is R \ B-complete to Z \ {z1}. Now if vRy1 is an edge of B, then
B|{y1, y2, y3, z1, z2, z3, vR} is isomorphic to P c

0 , and the first conclusion of the theorem holds; and if
vRy1 is an edge of R \B, then B|{y1, y2, y3, z1, z2, z3, vR} is isomorphic to P0, vR is R \B-complete
to (Y ∪ Z) \ {z1}, and the third conclusion of the theorem holds. This proves Lemma 4.10 �

Applying 4.10 with the roles of R and B reversed, we deduce that either
(1) R contains P c

0 , or
(2) R contains P1 or P2, and vB is B \R-complete to Z ′, or
(3) R contains P0, and there exists y′ ∈ Y ′, such that vB is B \R-complete to (Y ′ ∪ Z ′) \ {y′}.

To complete the proof of Theorem 1.10, we now analyze the possible conclusions of 4.10. Observe
first that by Lemma 4.10, each of B,R either contains P c

0 , or contains a member of P . Thus, if the
first conclusion of Lemma 4.10 holds for at least one of B,R (in other words, one of B,R contains
P c

0 ), we get a contradiction to the third, fourth or fifth assumption at the start of this section.
So we may assume that either the second or the third conclusion of Lemma 4.10 holds for B, and

the same for R. Therefore vR is R \B-complete to Y . We claim that every vertex of V has at least
two neighbors in R \B. Since by Lemmas 4.1 and 4.8 |Y |, |Z| ≥ 3, it follows that vR has at least
two neighbors in Y in R \B, and that every vertex of Z has at least two neighbors in Z in R \B.
Since vR is R \ B-complete to Y , and every vertex of Y has a neighbor in Z in R \ B, the claim
follows. Similarly, every vertex of V has at least two neighbors in B \R.

Next we observe that if the third conclusion of Lemma 4.10 holds for B, then vR has at most
one neighbor in B, and if the third conclusion of Lemma 4.10 holds for R, then vB has at most one
neighbor in R. This implies that the third conclusion of Lemma 4.10 does not hold for either B or
R, and thus the second conclusion of Lemma 4.10 holds for both B and R; consequently each of B
and R contains P1 or P2. But both P1 and P2 contain C5, contrary to the second assumption at
the start of this section. This completes the proof of Theorem 1.10.

5. Further problems

As we have already mentioned, Tardos’ theorem was extended in [1] to pairs of chordal graphs on
the same vertex set. With some trepidation we venture to conjecture that the theorem is valid also
for a pair of graphs as in Theorem 1.10:

Conjecture 5.1. Let B be a {C4, C5}-free graph and let R be a C4-free graph with V (B) = V (R) =
V . Let k be the maximal size of a stable set in G(B,R). Then there exist k cliques C1, . . . , Ck in B

and k cliques Ck+1, . . . , C2k in R such that V =
⋃2k

i=1Ci.

It is tempting to ask also about the chromatic number of the union of two graphs. For a graph G,
we denote its chromatic number by χ(G). Let us restrict ourselves in this case to chordal graphs:

Conjecture 5.2. If B and R are chordal graphs on the same vertex set then χ(G(B,R)) ≤
χ(B) + χ(R).
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Using the simplicial decomposition of chordal graphs, it is easy to show that in a chordal graph
G the average degree of the vertices does not exceed 2(ω(G)− 1) = 2(χ(G)− 1). From this follows
“half” of the conjecture, namely: if B and R are chordal then χ(G(B,R)) ≤ 2(χ(B) + χ(R)).
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