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Abstract

We study the problem of characterizing the set of games that are consistent with observed equilibrium
play. Our contribution is to develop and analyze a new methodology based on convex optimization to
address this problem for many classes of games and observation models of interest. Our approach provides
a sharp, computationally efficient characterization of the extent to which a particular set of observations
constrains the space of games that could have generated them. This allows us to solve a number of
variants of this problem as well as to quantify the power of games from particular classes (e.g., zero-sum,
potential, linearly parameterized) to explain player behavior. We illustrate our approach with numerical
simulations.

1 Introduction

This paper considers inference in game theoretic models of complete information. More precisely, we study
the problem of recovering properties and characterizing parameter values of the games that are consistent
with observed equilibrium play, and provide a simple procedure based on convex optimization to recover both
the region of consistent games and properties of said region, in a computationally efficient manner. Further,
our approach has the power to compute the size of the region of consistent games, and hence to determine
when approximate point identification of the true payoff matrices (or parameter values) is possible.

Our approach differs from most related work in that we depart from the usual distributional assump-
tions on the observer’s knowledge of the unobserved variables and payoff shifters; instead, we adopt the
weaker assumption that the unobserved variables belong to a known set. This increases the robustness
of our approach, reflecting ideas from the robust optimization literature—see [BTEGN09, BBC11, BB12].
Furthermore, our approach is formally computationally efficient and, when implemented, is able to handle
games of much larger size than those considered in previous work.

Our approach may be viewed as complementary to a model-driven approach, in that the tools we provide
here may be used to objectively evaluate the quality of fit one achieves under certain modeling assumptions.
Our approach also allows us to explore a variety of assumptions about the information that might available
to an observer of game play, and the effects that these assumptions would have on constraining the space of
consistent games.

1.1 Summary of results

We consider a setting where, at each step, a finite-action, 2-player game is played, and an observer observes
a correlated equilibrium (a more permissive concept than Nash equilibrium) of the game.1 We assume that
the games played on each step are closely related, in that each reflects a small perturbation in the payoffs of
some underlying game; such perturbations are often referred to as payoff shifters.
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1Our framework extends to multi-player games with succinct representations; for clarity, we focus here on the two-player

case. See Section 5.1 for a discussion of succinct multi-player games.
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In a departure from previous work, we do not make distributional assumptions on the payoff shifters, nor
do we make any assumption on how the players decide which equilibrium to play, when multiple equilibria
are present. Instead, we assume that the observer knows nothing of the equilibrium selection rule, and that
the information the observer has on the unobserved payoff shifters is simply that the unobserved payoff
shifters belong to a known set (see Section 2 for more details); this is a significantly weaker assumption
than knowing exactly what distribution the payoff shifters are taken from. For example, imagine an analyst
observes a routing game every day; the shifts in payoffs may come from a combination of several events such
as changes in road conditions, traffic accidents, and work zones, whose potential effects on the costs of paths
in a routing game may be difficult to predict and quantify precisely as a probability distribution.

In this setting, we give a computationally efficient characterization of the set of games that are consistent
with the observations (Section 3.1); this set is “sharp”, in the sense that it does not contain any game that
is not consistent with the observations. One of our main new contributions is computational efficiency itself:
the pioneering work of Beresteanu, Molchanov, and Molinari [BMM11] only checks membership of a game to
the set of consistent games, and does so in a manner that is tractable in small games but intractable for larger
games—see Section 1.2 for a more in-depth discussion. We also show that our framework accommodates an
alternate model wherein the observer learns the expected payoff of each player at each equilibrium he sees;
in our routing game example, think of an observer who sees the expected time each player spends in traffic.
We refer to this setting as “partial payoff information,” and discuss it in Sections 3 and 4.

Our second main contribution is our ability to quantify the size of the set of consistent games. We give
an efficient algorithm (see Section 3.4, Algorithm 1) that takes a set of observations as input and computes
the diameter of the sharp region of consistent games. The diameter of the consistent set is of interest to an
observer, because it gives him a measure of how sharp the conclusions he can draw from the observations
are (the larger the diameter, the less sharp the conclusions), and in particular the diameter quantifies the
level of approximate point identification that is achievable in a particular setting. Additionally, in Section 4,
Lemmas 2 and 3, we give structural conditions on the sets of observations that allow for accurate recovery.
We also exhibit examples in which said conditions do not hold, and therefore accurate recovery is not possible.

We show we can extend our framework (Section 3.3) to find the set of consistent games when restricted
to games with certain linear properties, e.g., zero-sum games, potential games, and games whose utilities
can be parametrized by linear functions; this allows us to determine to what extent the observed behavior
is consistent with such assumptions on the underlying game.

In Section 5, we show we can extend our framework to finite games with a large number of players,
provided the game has a succinct representation. We further show our framework’s potential to deal with
games with infinite action spaces, using Cournot competition as an example.

Finally, in Section 6, we illustrate our approach with simulations, in both a simple entry game (Sec-
tion 6.1), and in large Cournot competition games (Section 6.2).

1.2 Related work

One important modeling issue is whether and why one would ever observe multiple, differing behaviors
of a single agent. A natural, well-established approach models different observations found in the data
as stemming from random perturbations to the agents’ utilities, as in [BV84, BR91, Tam03, Sei06, AL10,
AL11, AL12, BHKN10, BHHR11]. In dynamic panel models, one observes equilibria across several markets
sharing common underlying parameters, and in particular [HM10] considers a setting in which a unique,
fixed equilibrium is played within each market. We adopt a similar approach here, and assume that we
have access to several markets or locations that play perturbed versions of the same game, and that a single
(mixed) equilibrium is played in each market.

In the branch of the econometrics literature that aims to infer parameters in game theoretic model, it is
often the case that one requires that the game be small or that the utilities of the players can be written
as simple functions of a restricted number of parameters. For example, 2-player entry games with entry
payoffs parametrized as linear functions of a small number of variables, as seen in [Tam03] and subsequent
work, are among the most-studied in the literature. One drawback of this literature is that when the space
of parameters is high-dimensional or when multiple equilibria exist, identification of the true parameters
of the game often becomes impossible, since the observations do not correspond to a unique consistent
explanatory game. A number of recent papers [ABJ04, CT09, BMM11, NST15] consider instead the problem
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of constructing regions of parameters that contain the true value of the parameters they aim to recover from
equilibrium observations of games. For example, Nekipelov, Syrgkanis, and Tardos [NST15] study a dynamic
sponsored search auction game, and provide a characterization of the rationalizable set, consisting of the set
of private parameters that are consistent with the observations, under the relaxed assumption that players
need not follow equilibrium play, but rather use some form of no-regret learning. Relatedly, Andrews, Berry,
and Jia [ABJ04] and Ciliberto and Tamer [CT09] compute confidence regions for the value of the true
parameter, but their regions are not “sharp,” in the sense that they may contain parameter values that are
not consistent with some of the implications of their models.

Perhaps closest to the present work, Beresteanu, Molchanov, and Molinari [BMM11] combine random
set theory and convex optimization to give a representation of the sharp identification region as the set of
values for which the solution to a convex optimization program with a random objective function is almost
surely (in the payoff shifters) equal to 0.2 Hence, verifying membership of a parameter value to the sharp
identification region can be done efficiently in simple settings such as entry-games with linearly parametrized
payoffs. This is an exciting advance, especially when considering games with few players and small action
sets; however, for computational reasons, the approach becomes impractical in large games, such as 2-player
games with many actions per player:

• The Beresteanu, Molchanov, and Molinari [BMM11] framework can verify that a vector of parameter
values belongs to the sharp identification set, but does not provide an efficient, searchable representation
of the sharp identification set itself, nor an algorithm to efficiently find a point in the set.

• One can verify that a parameter vector belongs to the sharp identification set by checking that a partic-
ular condition holds for almost all possible realizations of the payoff shifters. Beresteanu, Molchanov,
and Molinari [BMM11] further show that one can cluster payoff shifters into groups such that all
perturbed games in the same group have the same set of Nash equilibria; one then must check the
condition only once per group. In particular, in their entry-game example, the number of such groups
is small, and thus this is a computationally tractable task. However, in more complex games, or for
more general equilibrium concepts, the number of such groups can become intractably large in the
number of actions available to each player.

• Finally, the BMM framework [BMM11] relies on being able to compute all equilibria of each of the
perturbed games, which may be impractical. (In general, in the worst case, it is PPAD-hard to find
any Nash equilibrium, even for 2-player games [CDT07].)

The goal of the present paper is similar to the goal of [BMM11], in the sense that we wish to sharply
understand the set of games that are consistent with a set of observations (for us, correlated equilibria
of perturbed games). We also use the setting of their simulations as the jumping off point for our own
experimental section. However, our approach differs from that of [BMM11] in two main ways. First, we
make weaker assumptions on the information on the unobserved payoff shifters available to the observer; our
approach to modeling the perturbations is inspired by the concept of uncertainty sets in robust optimization
(see [BTEGN09, BBC11, BB12]). Second, our framework provides a computationally efficient characteriza-
tion of the consistent set, both in theory and in practice, on games of large size, and also gives efficient and
practical algorithms to find points in the consistent set, compute its diameter, and test whether it contains
games with certain properties.

A handful of papers in the computer science literature have looked at slightly different but related
questions, arising when observing equilibria of games whose payoffs are unknown. In particular, Bhaskar et
al. [BLSS14] and Rogers et al. [RRUW15] study a network routing setting in which equilibrium behavior
can be observed but edge costs are unknown, and study the query complexity of devising a variant of the
game to induce desired target flows as equilibria. Barman et al. [BBEW13] adopt a model in which the
observer observes what joint strategies are played when restricting the actions of the players in a complete
information game with no perturbations, and show that data with certain properties can be rationalized
by games with low complexity. Kuleshov and Schrijvers [KS15] assume the observer sees equilibria from a
collection of succinct games that share common parameters, and give a convex and computationally efficient

2Our notion of the consistent set is closely analogous to the sharp identification region of [BMM11]. We use different
terminology to highlight that they are derived under somewhat different settings.

3



characterization of the set of consistent parameters, for a wide class of games with known succinct structure.
Their work makes the interesting and important observation that correlated equilibria of succinct games
define a tractable number of linear constraints on the games whose equilibria are observed; we make use of
said observation in our work. We note however that our framework is different in scope, as i) our framework
accommodates more general relationships between the games whose equilibria are observed (specifically, we
do not assume common parameters and known structure; we only make the assumption that the games are
close to each other according to the metrics we define in Section 2); and ii) our framework can compute
metrics and recover properties of the set of underlying games that are consistent with the observations, such
as the diameter of the set of consistent games and whether the observations can be explained by games with
specific properties.

2 Model and setting

2.1 Players’ behavior

Consider a finite two-player game G; we will refer to it as the true or underlying game. Let A1,A2 be the
finite sets of actions available to players 1 and 2, respectively, and let m1 = |A1| and m2 = |A2| be the
number of actions available to them. For every (i, j) ∈ A1 ×A2, we denote by Gp(i, j) the payoff of player
p when player 1 chooses action i and player 2 chooses action j. Gp ∈ Rm1×m2 is the vector representation
of the utility of player p, and we often abuse notation and write G = (G1, G2). The strategies available to
player p are simply the distributions over Ap. A strategy profile is a pair of strategies (distributions over
actions), one for each player. A joint strategy profile is a distribution over pairs of actions (one for each
player); it is not required to be a product distribution. We refer to strategies as pure when they place their
entire probability mass on a single action, and mixed otherwise.

We consider l perturbed versions of the game G, indexed by k ∈ [l] so that the kth perturbed game is
denoted Gk; one can for instance imagine each Gk as a version of the game G played in a different location
or market k. The same notation as for G applies to the Gk’s.

Throughout the paper, we assume that for each k, the players’ strategies are given by a correlated
equilibrium of the complete information game Gk. In the presence of several such equilibria, no assumption
is made on the selection rule the players use to pick which equilibrium to play (though we assume they both
play according to the same equilibrium). Correlated equilibria are defined as follows:

Definition 1. A probability distribution e is a correlated equilibrium of game G = (G1, G2) if and only if

m2∑
j=1

G1(i, j)eij ≥
m2∑
j=1

G1(i′, j)eij ∀i, i′ ∈ A1

m1∑
i=1

G2(i, j)eij ≥
m1∑
i=1

G2(i, j′)eij ∀j, j′ ∈ A2

The notion of correlated equilibrium extends the classical notion of Nash equilibrium by allowing players
to act jointly; as every Nash equilibrium of a game is a correlated equilibrium of the same game, many of
our results also have implications for Nash equilibria.

2.2 Observation model

Our observer does not have access to the payoffs of the underlying game G nor of the perturbed games
Gk, for any k in [l]. We model an observer as observing, for each perturbed game Gk, the entire correlated
equilibrium distribution ek ∈ Rm1×m2 , where ek(i, j) denotes the joint probability in the kth perturbed game
of player 1 playing action i ∈ A1 while player 2 plays action j ∈ A2. Note that as ek represents a probability
distribution, we require ek(i, j) ≥ 0 ∀(i, j) and

∑
i,j

ekij = 1.

In practice, an observer may not have access to the full distribution of each equilibrium. Our approach can
also accommodate a less-demanding assumption, that the observer receives samples from the equilibrium
distribution, perhaps from multiple plays of the same (possibly mixed) equilibrium. If one additionally
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imposes the mild assumption that the payoffs of the underlying game G are bounded, one can use the
empirical distribution on the sampled observations to approximate the set of consistent games, by adding
a slack parameter to the inequalities of Definition 1; this can easily be incorporated into our framework.
Upper bounds on how to pick the parameter can be obtained through classical concentration inequalities,
or through the techniques of [GJN17, CHT07].3 For ease of exposition, in this paper, we focus on the case
where the full distribution is observed.

In this paper, we consider two variants of the model of observations we just described:

• In the partial payoff information setting, the observer has access to equilibrium observations e1, . . . , el,
and additionally to the expected payoff of equilibrium ek on perturbed games Gk, for each player p
and for all k ∈ [l]; we denote said payoff vkp and note that vkp = ek ′Gkp.

• In the payoff shifter information setting, at each step k, a payoff shifter βk = (βk1 , β
k
2 ) ∈ Rm1×m2 ×

Rm1×m2 is added to game G = (G1, G2), and the perturbed games Gk result from the further addition
of small perturbations to the G + βk’s. The observer knows β1, . . . , βl and observes e1, . . . , el of
perturbed games G1, . . . , Gl. This setting represents a situation in which changes in the behavior of
agents are observed as a function of changes in observable economic parameters (taxes, etc.).

While the payoff shifter information setting is the model of perturbations that is commonly used in the
literature, the partial payoff information setting has not been used in previous work, to the best of our
knowledge. We introduce it to model the following types of situation:

Example 1. Two firms are competing for customers in Los Angeles, and an observer follows what actions
the two L.A. firms take over the course of each quarter. The observer also learns the quarterly revenue of
each firm.

Example 2. Several agents are playing a routing game, and the observer sees not just the routes the players
choose, but also the amount of time players spend in traffic.

2.3 Observer’s knowledge about the perturbations

Our paper aims to characterize the games that explain equilibrium observations under the partial payoff and
payoff shifter information settings when the perturbations are known to be “small” and the perturbed games
are thus “close” to the underlying game. The next few definitions formalize our notion of closeness, and
Assumption 1 formalizes the information the observer has about the perturbations added to the underlying
game G.

Definition 2. A game G is δ-close to games G1, . . . , Gl with respect to metric d for δ > 0 if and only if
d(G1, . . . , Gl|G) ≤ δ.

We think of d as distances and therefore convex functions of the perturbations G−Gk for all k. For the
above definitions to make sense in the context of this paper, we need a metric whose value on a set of games
G,G1, . . . , Gl is small when G,G1, . . . , Gl are close in terms of payoffs. We consider the following metrics:

Definition 3. The sum-of-squares distance between games G and G1, . . . , Gl is given by

d2(G1, . . . , Gl|G) =

l∑
k=1

(G1 −Gk1)′(G1 −Gk1) +

l∑
k=1

(G2 −Gk2)′(G2 −Gk2).

3More precisely, [GJN17] provide upper bounds on the slack parameter that ensure the approximated set covers the true
parameters with high probability; therefore, the consistent sets of Section 3.1 and Section 3.3 can be generalized to approximate
sets for the sample setting. Further, [GJN17] also provide bounds on how much the optimal value of a convex optimization
problem changes when replacing the true constraints by their empirical counterparts with an appropriately chosen slack pa-
rameter. In this manner, our results in Section 3.4 and Algorithm 1 can be extended to obtain high probability bounds on the
diameter of the true consistent set, when the observer only has access to samples. [CHT07] propose a framework that ensures
the approximated set is on the one hand a consistent estimator of the sharp set of consistent games, and on the other hand
covers said set with high probability as the number of samples grows large.
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The maximum distance between games G and G1, . . . , Gl is defined as

d∞(G1, . . . , Gl|G) = max
p∈{1,2}, k∈[l]

‖Gp −Gkp‖∞,

where ‖.‖∞ denotes the usual infinity norm.

Both distances are useful, in different situations. The sum-of-squares distance is small when the variance
of the perturbations added to G is known to be small, but allows for worst-case perturbations to be large.
An example is when the Gk’s are randomly sampled from a distribution with mean G, unbounded support,
and small covariance matrix, in which case some of the perturbations may deviate significantly from the
mean but with low probability, while the average squared perturbation remains small. If the distribution of
perturbations is i.i.d Gaussian, the sum-of-squares norm replicates the log-likelihood of the estimations and
follows a Chi-square distribution. The maximum distance, in contrast, is small when it is known that all
perturbations are small and bounded; one example is when the perturbations are uniform in a small interval
[−δ, δ].

Throughout the paper, we make the following assumption on the information about the perturbations
that is available to the observer:

Assumption 1. Let G be the underlying game and G1, . . . , Gl be the perturbed games that generated obser-
vations e1, . . . , el.

• In the partial payoff information settings, the observer knows that G is δ-close to games G1, . . . , Gl

with respect to some metric d and magnitude δ ≥ 0.

• In the payoff shifter information setting with observed shifters β1, . . . , βl, the observer knows that G is
δ-close to the unshifted games (G1 − β1), . . . , (Gl − βl) with respect to some metric d and magnitude
δ ≥ 0.

Assumption 1 defines a convex set the observer knows the perturbations must belong to, much like the
uncertainty sets given in [BB12, BTEGN09, BBC11]. We note that the d2 and d∞ distances we focus on
define respectively an ellipsoidal and a polyhedral uncertainty set (as seen in [BBC11]).

Remark 1 (On the shape of the set of perturbations). While we make Assumption 1 for convenience and
simplicity of exposition, our framework is able to handle more general sets of perturbations. In particular,
the results of Section 3 can easily be extended to any convex set of perturbations that has an efficient, easy-to-
optimize-over representation. This includes classes of sets defined by a tractable number of linear or convex
quadratic constraints, which in turn encompasses many of the uncertainty sets considered in [BB12], such
as the central limit theorem or correlation information sets, and most of the typical sets presented therein.

Remark 2 (On the observer’s knowledge). In some settings, one may have reasonable upper bounds on the
value of δ: for example, in a routing game, the observer may know that delays in traffic cannot exceed a
few hours. However, in some settings it may be unreasonable to assume the observer knows a reasonably
tight upper bound δ. We remark that in such a case, our framework still gives the observer the power to
experiment with different values of δ and to see how they affect the set of consistent games and its diameter.
Along these lines, we plot heatmaps of the consistent set as a function of δ in Section 6.

It is usually the case in the econometrics literature that the distribution of perturbations is assumed to
be known. In such a case, there is a direct mapping from distributions over perturbations to values of δ:
one can pick δ such that d(G1, . . . , Gl|G) ≤ δ with high probability. For example, if the perturbations are
known to be Gaussian with a known mean and standard deviation, d2(G1, . . . , Gl|G) follows a Chi-square
distribution whose quantiles are known; one can then pick δ such that d(G1, . . . , Gl|G) ≤ δ with probability
p(δ). This immediately guarantees that the recovered set of consistent games contains the true parameters
(G,G1, . . . , Gl) with probability at least p(δ). Such a bound does not use all of the information available to
the observer about the perturbations, hence the recovered set is not sharp; however, in our simulations in
Section 6 we observed that under reasonable distributional assumptions, the set identified by our framework
remained reasonably small.
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2.4 Consistent games

In this paper, as in [BMM11], we adopt an observation-driven view that describes the class of games that
are consistent with the observed behavior. Given a set of observations, we define the set of consistent games
as follows:

Definition 4 (δ-consistency). We say a game G̃ is δ-consistent with the observations when there exists a
set of games (G̃, G̃1, . . . , G̃l) such that for all k, ek is an equilibrium of G̃k, and:

• If in the partial payoff information model of observations,
∑
p G̃

k ′
p ek = vkp for all players p and

d(G̃1, . . . , G̃l|G̃) ≤ δ.

• If in the payoff shifter information model, d(G̃1 − β1, . . . , G̃l − βl|G̃) ≤ δ.

The set of all δ-consistent games with respect to metric d is denoted Sd(δ).

Given the specifications of our model, it is often the case that, given a set of observations with no
additional assumption on the distribution of perturbations nor on a the rule used to select among multiple
equilibria, it is not possible to recover an approximation to a unique game that generated these observations
(no matter what recovery framework is used). That is, the diameter of the consistent set can sometimes be
too large for approximate point identification to be possible, which is highlighted in the following example:

Example 3. Take any set of observations e1, . . . , el under the no payoff information observation model, and
let Ĝ be the all-constant game, i.e., Ĝ1(i, j) = Ĝ2(i, j) = c for some c ∈ R and for all (i, j) ∈ A1 × A2.
Let Ĝ1 = . . . = Ĝl = Ĝ. Then for all k ∈ [l], ek is an equilibrium of Ĝk, and d2(G1, . . . , Gl|G) =
d∞(G1,l dots,G

l|G) = 0. That is, Ĝ is a trivial game, and it is consistent with all possible observations.
Even when e1, . . . , el are generated by a non-trivial G, without any additional observations, an observer
cannot determine whether G or Ĝ is the underlying game. In fact, both games are consistent with all
implications of our model. We note that this issue arises regardless of how inferences will be drawn about
the observations, so long as the approach does not discard consistent games.

It may thus be of interest to an observer to compute the diameter of the consistent set, either to determine
whether point identification is possible, or simply to understand how tightly the observations constrain the
space of consistent games. We define it as follows:

Definition 5. The diameter D(Sd(δ)) of consistent set Sd(δ) is given by

D(Sd(δ)) = sup{‖Ĝ− G̃‖+∞ s.t. G̃, Ĝ ∈ Sd(δ)}

When the diameter is small, then every game in the consistent set is close to the true underlying game, and
approximate point identification is achievable. When the diameter D(Sd(δ)) grows large, point identification
is impossible independently of what framework is used for recovery, as there exist two games that are
D(Sd(δ))-far apart in terms of payoff, yet either could have generated all observations.

3 A convex optimization framework

In this section, we show how techniques from convex optimization can be used to recover the perturbation-
minimizing explanation for a set of observations, determine the extent to which observations are consistent
with certain assumptions on the underlying game, and determine whether a set of observations tightly
constrains the set of games that could explain it well. The results in this section are not tied to a specific
observation model.

3.1 Efficient characterization of the set of consistent games

We will show that for every δ, and d ∈ {d2, d+∞}, the set of consistent games Sd(δ) has an efficient, convex
representation.
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Claim 1. If in the “partial payoff information” model of observations:

Sd(δ) =


G s.t

∃(G1, . . . , Gl) with d(G1, . . . , Gl|G) ≤ δ s.t.
m2∑
j=1

Gk1(i, j)ekij ≥
m2∑
j=1

Gk1(i′, j)ekij ∀i, i′ ∈ A1,∀k ∈ [l],

m1∑
i=1

Gk2(i, j)ekij ≥
m1∑
i=1

Gk2(i, j′)ekij ∀j, j′ ∈ A2,∀k ∈ [l]∑
p G̃

k ′
p ek = vkp


If in the “payoff shifter information” model:

Sd(δ) =

G s.t

∃(G1, . . . , Gl) with d(G̃1 − β1, . . . , G̃l − βl|G̃) ≤ δ s.t.
m2∑
j=1

Gk1(i, j)ekij ≥
m2∑
j=1

Gk1(i′, j)ekij ∀i, i′ ∈ A1,∀k ∈ [l],

m1∑
i=1

Gk2(i, j)ekij ≥
m1∑
i=1

Gk2(i, j′)ekij ∀j, j′ ∈ A2,∀k ∈ [l]


Proof. Follows from the definion of δ-consistency (Definition 4)

We remark that as in [BMM11], our sets are sharp: any game that explains the observations belongs to
this set, and any game that belongs to this set is consistent with our assumptions and observations. Indeed,
if G is in the consistent set, there must exist perturbations of valid magnitude (given by the corresponding
G1, . . . , Gl) and an equilibrium ek of each perturbed game that together would lead to our observations, by
the definition of the consistent set.

These consistent sets have efficient convex representations, for two reasons. First, all constraints are
always linear except those of the form d(G1

p, . . . , G
l
p|G) ≤ δ. When d = d2, d(G1

p, . . . , G
l
p|G) ≤ δ is a

simple convex quadratic constraint, while when d = d∞, d(G1
p, . . . , G

l
p|G) ≤ δ is equivalent to the following

collection of linear constraints:

−δ ≤ Gkp −Gp ∀p ∈ {1, 2},∀k ∈ [l]

Gkp −Gp ≤ δ ∀p ∈ {1, 2},∀k ∈ [l].

Second, the number of constraints describing each set is quadratic in the number of player actions m1 and
m2.

As mentioned in Section 2, in all observation models, the assumption that d(G1
p, . . . , G

l
p|G) ≤ δ can easily

be replaced by an assumption of the perturbations Gk −G being in any tractable convex set. In particular,
many of the sets considered in [BB12] fit this requirement, and they describe robust information that an
observer without distributional knowledge of the perturbations could realistically have on said perturbations:
for example, an observer could know that the sum or average of the perturbations satisfies certain lower-
and upper-bounds.

3.2 Recovering the perturbation-minimizing consistent game

Here, we consider the problem of recovering a game that best explains a given set of observations from
perturbed games, according to the desired distance metric d. One reason to do so is that it enables an
observer to test whether there exists any game in Sd(δ) that is consistent with specific properties and to give
a measure of how much of Sd(δ) has said properties—see Section 3.3. Or, it could be that the observer is
simply interested in recovering the “best” game according to any simple convex metric of interest. For any
metric d and any observation model, this can be done simply by solving:

min
G,δ

δ

s.t. G ∈ Sd(δ)
(1)

It is easy to see that this program returns the gameG and the minimum value of δ such that d(G1, . . . , Gl|G) ≤
δ (resp. d(G1 − S1, . . . , Gl − Sl|G) ≤ δ) in the partial payoff information setting (resp. the payoff shifter
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information setting) where the Gk’s satisfy all equilibrium constraints, hence Program (1) returns the
perturbation-minimizing G that is consistent with all observations. When d = d∞, this is a linear pro-
gram; when d = d2, this is a second-order cone program, using the same reasoning as in Section 3.1 (this
holds even with δ as a variable). Both types of programs can be solved efficiently, as seen in [BV04].

3.3 Can observations be explained by linear properties?

This convex optimization-based approach can further be used to determine whether there exists a game that
is compatible with the observations and that also has certain additional properties, as long as the properties
of interest can be expressed as a tractable number of linear equalities and inequalities. One can then solve
program (1) with said linear equalities and inequalities as additional constraints (the program remains a
SOCP or LP with a tractable number of constraints), then check whether the optimal value is greater than
or less than δ. If the optimal value is greater than δ, then there exists no game with those properties that
belongs to the δ-consistent set; if the optimal value is smaller than δ, then the recovered game displays the
additional properties and belongs to the δ-consistent set. In what follows, we present a few examples of
interesting properties that fit this framework.

Zero-sum games A zero-sum game is a game in which for each pure strategy (i, j), the sum of the
payoff of player 1 and the payoff of player 2 for (i, j) is always 0. One can restrict the set of games we
look for to be zero-sum games, at the cost of separability of Program (1), by adding constraints G1(i, j) =
−G2(i, j) ∀(i, j) ∈ A1 ×A2.

Exact potential games A 2-player game G is an exact potential game if and only if it admits an exact
potential function, i.e., a function Φ that satisfies:

Φ(i, j)− Φ(i′, j) = G1(i, j)−G1(i′, j) ∀i, i′ ∈ A1,∀j ∈ A2 (2)

Φ(i, j)− Φ(i, j′) = G2(i, j)−G2(i, j′) ∀i ∈ A1,∀j, j′ ∈ A2 (3)

In order to restrict the set of games we are searching over to the set of potential games, one can introduce
m1m2 variables Φ(i, j) and constraints (2), (3) in Program (1).

Games generated through linear parameter fitting It is common in the literature to recover a
game with the help of a parametrized function whose parameters are calibrated using the observations. In
many applications, linear functions of some parameters are considered—entry games are one example. Our
framework allows one to determine whether there exist parameters for such a linear function that provide
good explanation for the observations. When such parameters exist, one can use the mathematical program
to find a set of parameters that describe a game which is consistent with the observations. Take two functions
f1(θ) and f2(θ) that are linear in the vector of parameters θ and output a vector in Rm1×m2 . It suffices to
add the optimization variable θ and the linear constraints G1 = f1(θ) and G2 = f2(θ) to Program (1) to
restrict the set of games we look for to games linearly parametrized by f1, f2.

3.4 Computing the diameter of the consistent set

In this section, we provide an algorithm (Algorithm 1) for computing the diameter of Sd(δ), for any given
value of δ. Because the diameter is a property of the consistent set and not of the framework used to re-
cover an element from said set, this tells an observer whether approximate point identification is possible
independently of what framework is used for recovery. In particular, when the diameter is small, our frame-
work approximately recovers the true underlying game (see Section 3.2). When the diameter is large, no
framework can achieve approximate point identification of a true, underlying game.

Algorithm 1 is computationally efficient for the considered metrics d2 and d∞: it solves 2m1m2 linear
programs for d∞, and 2m1m2 second-order cone programs (SOCP) for d = d2 with a tractable number of
constraints. The algorithm computes the diameter of the consistent set:

Lemma 1. The output A(δ) of Algorithm 1 run with input δ satisfies A(δ) = D(Sd(δ)).

Proof. See Appendix A.
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ALGORITHM 1: Computing the diameter of the consistent set

Input: Observations e1, . . . , el, magnitude of perturbations δ, metric d
Output: Real number A(δ) (may be infinite)
for (i, j) ∈ A1 ×A2, player p ∈ 1, 2 do

Pδ,p(i, j) = sup
G̃,Ĝ,γ

γ

s.t. G̃ ∈ Sd(δ)
Ĝ ∈ Sd(δ)
G̃1(i, j)− Ĝ1(i, j) ≥ γ

end
A(δ) = max

(i,j)∈A1×A2

max
p∈{1,2}

Pδ,p(i, j)

4 Consistent games with partial payoff information: when is re-
covery possible?

This section considers the partial payoff information variant of the observation model described in Section 2.
We ask the following question: when is it possible to approximate the underlying game, in the presence of
partial payoff information? We answer this question by giving bounds on the diameter of the consistent set
Sd(δ) as a function of δ and the observations e1, ..., el, for both metrics d2 and d∞.

Recall that in this setting, for an equilibrium ek observed from perturbed game Gk, the observer learns
not only ek, but also the expected payoff vkp of player p in said equilibrium strategy on game Gk. Similar

to the previous sections, we are interested in computing a game Ĝ that is close to some perturbed games
Ĝ1, ..., Ĝl that (respectively) have equilibria e1, ..., el with payoffs v1, ..., vl. For simplicity of presentation,
we recall that the optimization program that the observer solves is separable and note that he can thus solve
the following convex optimization problem for player 1, and a similar optimization problem for player 2:

P (ε)= min
Gk

1 ,G1

d(G1
1, ..., G

k
1 |G1)

s.t.
d∑
j=1

Gk1(i, j)ekij ≥
d∑
j=1

Gk1(i′, j)ekij ∀i, i′ ∈ A1,∀j ∈ A2,∀k ∈ [l]

ek ′Gk1 = vk1 ∀k ∈ [l]

(4)

We take l ≥ m1m2 and make the following assumption for the remainder of this subsection, unless
otherwise specified:

Assumption 2. There exists a subset E ⊂ {e1, ..., el} of size m1m2 such that the vectors in E are linearly
independent.

We abuse notation and denote by E the m1m2×m1m2 matrix in which row i is given by the ith element
of set E, for all i ∈ [m1m2]; also, we write d(G1, ..., Gl|G) =

∑
p
d(G1

p, ..., G
l
p|Gp), i.e., d(G1

p, ..., G
l
p|Gp) is

the part of d(G1, ..., Gl|G) that corresponds to player p. For every p ∈ N ∪ {+∞}, let ‖.‖p be the p-norm.

We can define the corresponding induced matrix norm ‖.‖p that satisfies ‖M‖p = sup
x6=0

‖Mx‖p
‖x‖p for any matrix

M ∈ Rm1m2×m1m2 .
Lemmas 2 and 3 highlight that if one has linearly independent observations such that E is well-conditioned,

any optimal solution of Program (4) necessarily recovers a game whose payoffs are close to the payoffs of
the underlying game, as long as the perturbations are small. The statements are given for both metrics
introduced in Section 2. Example 4 shows that E being well-conditioned is, in fact, necessary.

Lemma 2. Let G be the underlying game, and G1, ..., Gl be the games generating observations e1, .., el, where
l = m1m2. Suppose that for player p, d2(G1

p, ..., G
l
p|Gp) ≤ δ. Let (Ĝp, Ĝ

1
p, ..., Ĝ

l
p) be an optimal solution

of Program (4) for player p with distance function d2. Then

‖Gp − Ĝp‖2 ≤
√

2‖E−1‖2 · δ.
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Proof. For simplicity of notation, we drop the p indices. We first remark that (G,G1, ..., Gl) is feasible for
Program (4); as (Ĝ, Ĝ1, ..., Ĝl) is optimal, it is necessarily the case that

l∑
k=1

‖Ĝ− Ĝk‖22 ≤
l∑

k=1

‖G−Gk‖22 ≤ δ.

Let us write ∆G = G− Ĝ. We know that for all k, ek ′Gk = ek ′Ĝk = vk, and thus ek ′(Gk − Ĝk) = 0. We
can write

E∆G = (e′1(G− Ĝ) ... e′l(G− Ĝ))′

= (e′1(G−G1 +G1 − Ĝ1 + Ĝ1 − Ĝ) ... e′l(G−Gl +Gl − Ĝl + Ĝl − Ĝ))′

= (e′1(G−G1 + Ĝ1 − Ĝ) ... e′l(G−Gl + Ĝl − Ĝ))′.

Let xk = G − Gk + Ĝk − Ĝ. We then have ‖E∆G‖22 =
l∑

k=1

x′keke
′
kxk, as eke

′
k is a symmetric, positive

semi-definite, stochastic matrix, all its eigenvalues are between 0 and 1 and

‖E∆G‖22 ≤
l∑

k=1

x′kxk =

l∑
k=1

‖xk‖22 ≤ 2δ.

It immediately follows that ‖∆G‖2 ≤
√

2‖E−1‖2 · δ.

Lemma 3. Let G be the underlying game, and G1, ..., Gl be the games generating observations e1, .., el, where
l = m1m2. Suppose that for player p, d∞(G1

p, ..., G
l
p|Gp) ≤ δ. Let (Ĝp, Ĝ

1
p, ..., Ĝ

l
p) be an optimal solution

of Program (4) for player p with distance function d∞. Then

‖Gp − Ĝp‖∞ ≤ 2‖E−1‖∞ · δ.

Proof. See Appendix B.

When E is far from being singular, as long as the perturbations are small, we can accurately recover the
payoff matrix of each player. This has a simple interpretation: the further E is from being singular, the
more diverse the observations are. More diverse observations means more information for the observer, and
allows for more accurate recovery. On the other hand, if the matrix E is close to being singular, it means
that one sees the same or similar observations over and over again, and does not gain much information
about the underlying game—there are more payoffs to recover than different observations, and the system
is underdetermined.

An extreme example arises when we take E to be the identity matrix, in which case we observe every
single pure strategy of the game and an approximation of the payoff of each of these strategies, allowing
us to approximately reconstruct the game. It is also the case that there are examples in which ‖E−1‖∞ is
large and there exist two games that are far from one another, yet both explain the observations, making
our bound essentially tight:

Example 4. Consider the square matrix E ∈ R4×4 with probability 0.25 + ε on the diagonal and 0.75−ε
3 off

the diagonal, i.e., we observe four equilibria, each placing probability slightly higher than 0.25 on a different
action profile; the first equilibrium has a higher probability on action profile (1,1), the second on (1,2), the
third on (2,1) and the last one on (2,2). Suppose the vector of observed payoffs is v = (δ,−δ, δ,−δ), where
v(i) is the payoff for the ith equilibrium. Note that there exists a constant C such that for all ε > 0 small
enough, ‖E−1‖+∞ ≤ C

ε .
In the rest of the example, we fix the payoff matrix of player 2 for all considered games to be all-zero

so that it is consistent with every equilibrium observation, and describe a game through the payoff matrix of
player 1. Let G be the all-zero game, G1 = G3 be the game with payoff δ

0.5+2ε/3 on actions (1,1) and (1,2)

and 0 everywhere else, and G2 = G4 be the game with payoff − δ
0.5+2ε/3 on actions (2,1) and (2,2) and 0

everywhere else. The Gi’s are consistent with the payoff observations as the payoffs are constant across rows
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on the same column, making no deviation profitable, and the payoff of equilibria e1 and e3 on G1 and G3 is
indeed δ, and −δ for e2 and e4 on G2 and G4. We have

d∞(G1, G2, G3, G4|G) =
δ

0.5 + 2ε/3
≤ 2δ

and
lim
ε→0

d∞(G1, G2, G3, G4|G) = 2δ.

Now, take Ĝ to be the game that has payoff δ/ε for action profiles (1,1) and (1,2), and −δ/ε for (2,1) and
(2,2). Take Ĝ1 = Ĝ3 to be the game with payoffs δ

ε in the first column, and − δε
3−2ε
3−4ε in the second column;

similarly, take Ĝ2 = Ĝ4 to be the game with payoffs δ
ε
3−2ε
3−4ε in the first column and − δε in the second column.

The observations are equilibria of the Ĝi’s and yield payoff δ. Now, note that for ε < 3/4,

d∞(G1, G2, G3, G4|G) =
δ

ε

∣∣∣∣1− 3− 2ε

3− 4ε

∣∣∣∣ =
2

3− 4ε
δ.

Therefore, both G and Ĝ are good explanations of the equilibrium observations, in the sense that for
ε ≤ 1/4, G is δ-close to G1, ..., Gl and Ĝ is δ-close to Ĝ1, ..., Ĝl that have e1, ..., el as equilibria, respectively.
However,

‖G− Ĝ‖∞ =
δ

ε
− δ

0.5 + 2ε/3
≥ δ

(
1

ε
− 2

)
,

which immediately implies

‖G− Ĝ‖∞ = Ωε→0

(
δ

ε

)
= Ωε→0

(
‖E−1‖∞δ

)
.

Remark 3. In the case of sparse games, in which some action profiles are never profitable to the players, and
are therefore never played, one can reduce the number of linearly independent, well-conditioned observations
needed for accurate recovery. Under the assumption that the action profiles that are never played with
positive probability have payoffs strictly worse than the lowest payoff of any action profile played with non-
zero probability, one can solve the optimization problem on the restricted set of action profiles that are
observed in at least one equilibrium, and set the payoffs of the remaining action profiles to be lower than the
lowest payoff of the recovered subgame, without affecting the equilibrium structure of the game. While the
recovered game may not be the unique good explanation of the observations when looking at the full payoff
matrix, it is unique with respect to the subgame of non-trivial actions when one has access to sufficiently
many linearly independent, well-conditioned equilibrium observations.

5 Extensions

In this section, we show extensions of our framework—first to succinct games with many players, and second
to some games with infinite action spaces.

5.1 Linear succinct games (as per [KS15])

In general, computational tractability cannot be achieved as the number of players increases. A reason for
this is that in the general case, an intractable, exponential number (in the number of players) of variables
need be used to represent the game and its equilibria: in a game with n players and m actions per player,
there are mn pure action profiles, hence mn variables are needed simply to represent the payoff matrices and
the equilibria of the recovered games.

However, if the game and the observed equilibria have a compact representation, the equilibrium con-
straints can be written down using a tractable number of variables, and our framework provides efficient
algorithms to find an element in the consistent set, compute its diameter, and test for linear properties.
Kuleshov and Schrijvers [KS15] consider linear succinct games and make the interesting observation that if
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the structure of the succinct game is known and if we observe an equilibrium such that the “equilibrium sum-
mation property holds” (roughly, the exact expected utility of the players can be computed efficiently), then
a game is consistent with the equilibrium observations if and only if a polynomial number of tractable, linear
constraints are satisfied. Such constraints can easily be incorporated into our framework. (See Property 1
and Lemma 1 of [KS15] for more details.)

5.2 Cournot competition and infinite action space

In the general case, our framework cannot directly deal with games with infinite action spaces in a tractable
way: to write down an equilibrium constraint, one needs a constraint for each of the infinite number of
possible deviations. In this section, we show that, nevertheless, for some games with infinite action spaces,
only a finite, tractable number of constraints is needed to characterize the equilibria; we show how to adapt
our framework to such games. For illustration, we focus on the Cournot competition game with continuous
spaces of production levels.

Consider a Cournot competition with n players selling the same good. Each player i chooses a production
level qi ≥ 0, and sells all produced goods at price P (q1, ..., qn) common to all players, and each player i incurs
a production cost ci(qi) to produce qi units of the good; we write G=(P, c) where c = (c1, ..., cn). We assume
that P is concave in each qi.

We assume the observer knows the function P and wants to recover the costs ci of the players, where the
underlying costs change slightly with each observation. Formally, consider that we have l perturbed games
such that in every pertubed game k, the players play a Cournot competition with the same, commonly
known price function P but perturbed cost functions cki for each player i, known to be convex. We obtain
equilibrium observations q1, ..., ql, where qki is the equilibrium production level of player i in perturbed game
k and qk = (qk1 , ..., q

k
n), that is, Gk = (P, ck).

Suppose the following hold:

• The observer knows the costs belong to the space of polynomials of any chosen fixed degree d ≥ 1; i.e.,
the observer parameterizes the underlying and perturbed cost functions in the following way:

ci(qi) =

d∑
ex=1

ai(ex)qexi (5)

where the ai(ex)’s are now the variables the observer want to recover.

• d(c1, ..., cl|c) ≤ δ can be written as a tractable number of semidefinite constraints on the aki ’s and ai’s
(this includes, but is not limited to, the d2 and d∞ distances).

• P (q) and ∂P
∂qi

can be computed efficiently for i, given q.

Then Sd(δ) has an efficiently computable and tractable representation (as a function of n, l and d) as the
intersection of SDP constraints. This means in particular that optimizing a linear function over Sd(δ) can be
cast as a tractable semidefinite program, for which efficient solvers are known – see [BV04]; one such solver,
that we use in the simulations of Section 6, is CVX [GB14]. This enables us to efficiently recover a game
in the consistent set, efficiently compute its diameter, and efficiently test for linear properties (by simply
adding linear and thus SDP constraints, as needed).

To obtain such a tractable characterization, we only need to note that i) the equilibrium constraints can be
rewritten as a tractable number of tractable linear constraints, and ii) convexity constraints on polynomials
can be classically cast as tractable SDP constraints. This is the object of Appendix C.1 and C.2.

6 Simulations for entry games and Cournot competition

In this section, we run simulations for two concrete settings to illustrate the power of our approach. We first
(Section 6.1) illustrate how our framework performs on a simple entry game. We then (Section 6.2) show
that it is able to handle much larger games.
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6.1 2-player entry game

We first consider an entry game, in which each of two players (think of them as companies deciding whether
to open a store in a new location) has two actions available to him (enter the market; don’t enter the
market). Entry games are common in the literature, as seen in [ABJ04, CT09, BMM11], and, because of
their simplicity, allow us to cleanly visualize the consistent region.

Each player p has two actions: Ap = {0, 1}; ap = 0 if player p does not enter the market, ap = 1 if he
does. The utility of a player is given by Gp(ap, a−p) = ap((1− a−p)γp + a−pθp) for some parameters γp ≥ 0
and θp ≤ γp, similarly to [Tam03]: if player p does not enter the market, his utility is zero; if he enters the
game but the other player does not, p has a monopoly on the market and gets non-negative utility; finally, if
both players enter the game, they compete with each other and get less utility than if they had a monopoly.

In our simulations, we fix values for the parameters (γp, θp) and generate the perturbed games as follows:

• In the partial payoff information setting, we add independent Gaussian noise with mean 0 and standard
deviation σ to Gp(ap = 1, a−p) (we vary the value of σ) to obtain the perturbed games G1, ..., Gl.

• In the payoff shifter information setting, we sample the payoff shifters β1, ..., βl such that for all k ∈ [l],
for all players p, βkp (ap = 1, a−p) follows a normal distribution of mean 0 and standard deviation σs.
We then add Gaussian noise with mean 0 and standard deviation σ to Gp(ap = 1, a−p) to obtain the
perturbed games G1, ..., Gl.

In both observation models, paralleling the setting of [BMM11], no observed payoff shifter nor unknown
noise is added to the payoff of action ap = 0 for player p; action ap = 0 is always assumed to yield payoff
0 for player p, independently of a−p. In order to generate the equilibrium observations, once the perturbed
games are generated, we find the set of equilibria of each of the Gk, and sample a point ek in said set. In
the payoff information case, we also compute vk = ek ′Gk.

In order to parallel the setting of Beresteanu et al. [BMM11], we assume the observer knows the form
of the utility function, i.e., that Gp(0, 0) = 0 and Gp(ap = 0, a−p = 1) = 0, and that he aims to recover
the values of γp and θp. Thus, we add linear constraints Gp(0, 0) = 0 and Gp(ap = 0, a−p = 1) = 0 in the
optimization programs that we solve (see Program (1)) in the payoff shifter information and partial payoff
information settings. Furthermore, we assume as in [BMM11] that the observer knows that perturbations
are only added to γ and θ, and therefore we add linear constraints Gkp(0, 0) = 0 and Gkp(ap = 0, a−p = 1) = 0
for all k ∈ [l] to the optimization problems for player p in each of the observation models. All optimization
problems are solved in Matlab, using CVX (see [GB14]).

Our model for entry-games is similar to the ones presented in [Tam03] and used in simulations in [BMM11],
so as to facilitate informal comparisons of the simulation results of both papers; in particular, the parametriza-
tion of the utility functions of the players in our simulations is inspired by [BMM11], and noise is generated
and added in a similar fashion. However, while we attempt to parallel the simulations run by Beresteanu
et al. [BMM11], it is important to note that this is not an apples-to-apples comparison, because of key
differences in the setting. In particular, our observation models (seeing full equilibria) and the information
available to the observer (no distributional assumptions) are different from those in [BMM11].

6.1.1 Consistent regions for Player 1

We fix l = 500, γ = 5, θ = −10 in all simulations, and vary the values of σ and σs. Because the observations
are generated by adding i.i.d Gaussian noise with mean 0 and variance σ2 to the two payoffs for entry of
each player, if G is the underlying game and G1, ..., Gl are its perturbations,

1

σ2
d2(G1, ..., Gl|G) (resp.

1

σ2
d2(G1 − β1, ..., Gl − βl|G))

follows a Chi-square distribution with 4l degrees of freedom in the partial payoff information case (resp. in
the payoff shifter case). We choose δ such that P (d2(G1, ..., Gl|G) ≤ δ) ≈ 0.99, and suppose the observer
sees said value of δ. While the observer may not have access to the distribution of perturbations, it is
extremely likely he will experience a magnitude of perturbations equal to or less than δ, and we can use δ as
a high-probability upper bound on the information on the perturbations accessible to the observer. It may
also be the case that the observer knows the distribution of perturbations, in which case the observer could
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pick such a value of δ to guarantee that with 0.99 probability, the recovered set covers the true, underlying
game.

(a) σ = 0.5,
σs = 2.5

(b) σ = 0.5,
σs = 5

(c) σ = 0.5,
σs = 10

(d) σ = 1.5,
σs = 10

Figure 1: Plots of the consistent region for different values of σ, σs in the payoff shifter information observation
model

In all plots, the colored region in the plots is the projection over the space (γ1, θ1) for player 1 of the
set of parameters (γ1, θ1, γ2, θ2) that are in the δ-consistent region. The darker the region, the smaller the
objective value of the best explanation for the corresponding values of γ and θ. The black, center of the region
represents the value of (γ, θ) that minimizes d2(G1, ..., Gl|G). We note that darker colors define consistent
regions with smaller values of δ; therefore the heatmap allows the observer to visualize how varying δ affects
the set of consistent games.

Figure 1 shows the evolution of the consistent region when varying σ and σs in the payoff shifter in-
formation setting. The smaller the standard deviation σ of the unknown noise, the tighter the consistent
region. On the other hand, reasonably increasing the value of σs can be beneficial, at least when it comes
to centering the consistent region on the true values of the parameters: this comes from the fact that when
the game is sufficiently perturbed, new equilibria arise and new, informative behavior is observed, while not
adding significant uncertainty to the payoffs of the game.

Figure 2 shows the evolution of the consistent region when varying σ. The larger the value of σ, the larger
the consistent region, and the further away its center is from the underlying, true value of the parameters.

(a) σ = 0.5 (b) σ = 1.0 (c) σ = 1.5 (d) σ = 2.5

Figure 2: Plots of the consistent region for different values of σ in the partial payoff information observation
model

6.1.2 Testing for linear properties

We also illustrate via simulation how our framework can test the ability of linear properties to explain
observed behavior. In particular, here we test whether a set of observations is likely to be explained by
a zero-sum game. We consider entry games as defined in the previous section, and assume the observer
wants to test whether observations were generated by a game that is approximately zero-sum, without any
information on the parametric form of the game (the observer does not know the game is an entry game).

Formally, we say a game G = (G1, G2) is ε-zero-sum with respect to the p-norm if and only if ‖G1+G2‖p ≤
ε. Note that a game being ε-zero-sum is a linear property and therefore can be included in our framework.
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(a) Payoff information setting with σ = 0.5
(b) Payoff shifter information setting with σ = 0.5,
σs = 10

Figure 3: Testing for zero-sum with respect to the 1-norm

The smaller the value of ε, the more stringent the condition is and the closer G must be to a zero-sum game.
We use l = 500, σ = 0.5, σs = 10 in all simulations.

As before, we pessimistically assume the observer sees δ such that
P (d2(G1, ..., Gl|G) ≤ δ) ≈ 0.99, that is, δ = 537.5 for l = 500, σ = 0.5. Figure 3 shows for which values
of ε one can recover a ε-zero-sum game with objective value less than 537.5 that explains the observations
for different values of γ and θ. Values of ε to the left of the intersection between the red and the blue line
are impossible, while values to the right of this intersection indicate there is a ε-zero-sum game that explain
the observations. In both cases, we see that no zero-sum game or game close to being zerosum is a good
explanation for the observations; in the payoff information setting, no game less than 21-zerosum explains
the observations, while in the payoff shifter setting, no game less than 15-zerosum explains the observations.

6.2 Multiplayer Cournot competition

In this section, we run simulations on a Cournot competition with varying number of players. See Section 5.2
for a discussion of how our framework can be modified to accommodate Cournot games with many players
and an action set of infinite size for each player. All simulations were performed on a laptop with an Intel
Core i7-4700MQ at 2.40GHz and 16 GB RAM.

6.2.1 Generating the games

Let n be the number of players, and qi the production level of player i. We fix a parameter α = 0.05, and

set the price function to be given by P (q1, ..., qn) = 1− α
n∑
i=1

qi; the price function is known to the observer.

We fix the form of the cost function to be linear; that is, the cost of producing qi of goods incurred by player
i is given by ci(qi) = aiqi + bi. Without loss of generality, we set bi = 0: bi does not affect the maximization
problem nor the first order condition solved by player i, and hence does not impact the chosen production
level of the players.

We generate ng = 10 underlying Cournot games with heterogeneous, linear cost functions ci(x) = aix as
follows:

• We first set âi = 0.01 for every player i.

• We generate each of the ng games by adding i.i.d. truncated Gaussian noise Xi with mean 0 and
standard deviation 0.01 to the âi’s. I.e., ai = 0.01+Xi where Xi can be written as Xi = max(Zi,−0.01)
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Figure 4: Average recovery time as a function of the degree with 10 players, 10 equilibrium observations

and Zi is a non-truncated Gaussian with mean 0, standard deviation 0.01. This ensures the ai’s are
always non-negative, hence the production costs are always non-decreasing.

Note that the same ng games are used in all plots and simulations.
For each of the ng games, we then generate l perturbed games by adding truncated Gaussian noise with

standard deviation σ = 0.001 to each of the ai’s. As before, the noise is truncated to ensure non-negativity
of the perturbed ai’s. We then solve the first-order condition to obtain equilibrium observations and note
that all obtained qi’s are positive with extremely high probability.

6.2.2 Observer’s problem and simulation results

We assume the observer wants to recover a cost that is polynomial of chosen degree d ≥ 1. I.e., the observer
parameterizes the cost functions in the following way: ci(x) = ai(d)xd + ai(d − 1)xd−1 + ... + ai(1)x; we
always assume that for every player i, every perturbed game k, ai(0) = 0 and aki (0) = 0 for simplicity (not
producing anything costs the players nothing); we note that this without loss of generality, as a constant shift
does not change the utility-maximizing strategies of the players. The observer also knows the perturbed cost
function cki ’s of the perturbed games are convex. The program then solved by the observer is derived from
the results of Section 5.2. Throughout this subsection, all results are averaged over the ng games originally
generated: for each game, we measure the diameter of the consistent set, the time taken to recover a game
within the set, and the time taken to compute the diameter, then average it over the ng games we consider.

Figure 4 shows the time it takes the observer to recover a game within the consistent set as a function of
the degree of the polynomial cost function considered, fixing the number of players to 10 and the number of
perturbed games/equilibrium observations to 50 per underlying game. We see the recovery time is less than
a minute, even when considering polynomials of degree 10 or 12, and that said time increases roughly linearly
in the degree of the polynomial used for recovery. This allows for recovery within minutes for high-degree
polynomials, even when using the minimal computing power of a personal laptop.

Figure 5 shows the value of the diameter of the consistent set when the observer assumes the cost function
is linear. The diameter is plotted as a function of the number of observations, in the presence of a fixed
number of players (10). The figure shows the diameter decreases quickly as the number of equilibrium
observations. When only one equilibrium observation is available, the diameter is 3.3× 10−3, which is 35%
of the expected true cost âi = 0.01; at 10 equilibrium observations, it is 3.3× 10−4, i.e. only 3.5% of âi, and
at 100 equilibrium observations, it is 6.6× 10−5, i.e. 0.66% of âi. Hence, very few equilibrium observations
are necessary to recover the underlying game accurately.
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Figure 5: Average diameter as a function of the number equilibrium observations

(a) Recovery time
vs players

(b) Diameter time
vs players

(c) Recovery time
vs equilibria

(d) Diameter time
vs equilibria

Figure 6: Average recovery/diameter time as a function of the number of observations/number of players,
when recovering linear costs

Figures 6a and 6b show the time it takes the observer to recover a game within the consistent set and
to compute its diameter as a function of the number of players, fixing the degree of the polynomial to 1
and equilibrium observations to 50 per underlying game. Similarly to before, we see that the recovery time
increases roughly linearly as a function of the number of players, and it takes less than 1.5 seconds on average
to recover a consistent game, even with 50 players. The diameter time increases roughly quadratically: this
was expected, as both the number of programs to solve and the size of each program increase linearly in the
number of players. Hence, while computing the diameter scales superlinearly, it remains computable within
minutes, even with larger numbers of players, on a personal laptop. To the best of our knowledge, no previous
approach to understanding the games consistent with observed behavior offers comparable scalability.

Finally, Figures 6c and 6d show the time it takes the observer to recover a game within the consistent set
and to compute its diameter as a function of the number of equilibria, fixing the degree of the polynomial
to 1 and the number of players to 10 per underlying game. Both the recovery time and the diameter
time scale linearly with the number of equilibrium observations. Unlike before, while the size of each
subprogram to solve to compute the diameter increases, the number of such programs is independent of the
number of observations, allowing for extremely good scalability of our framework as function of the number
of equilibrium observations. In practice, the number of players is fixed but the observer may see more
observations over time, and our framework is able to deal with such an increasing number of observations.
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A Proof of performance of the algorithm

Consider the following optimization program:

Pδ = sup
G̃,Ĝ,γ

γ

s.t. G̃ ∈ Sd(δ)
Ĝ ∈ Sd(δ)
max(‖G̃1 − Ĝ1‖∞, ‖G̃2 − Ĝ2‖∞) ≥ γ

Clearly, Pδ = D(Sd(δ)), simply by noting that the program is a rewriting of Definition 5. Now if Pδ =
max

(i,j)∈m1m2

max(Pδ,1(i, j), Pδ,2(i, j)), then we have shown that A(δ) = D(Sd(δ)). This holds because:

• For every player p and action profile (i, j), if G̃p(i, j) − Ĝp(i, j) ≥ γ then max(‖G̃1 − Ĝ1‖∞, ‖G̃2 −
Ĝ2‖∞) ≥ γ. Hence Pδ ≥ max

p,(i,j)
Pδ,p(i, j).

• If max(‖G̃1− Ĝ1‖∞, ‖G̃2− Ĝ2‖∞) ≥ γ, then there exists a player p and a set of actions (i, j) such that
G̃p(i, j)− Ĝp(i, j) ≥ γ w.l.o.g. (remember G̃ and Ĝ play symmetric roles) and so one of the Pδ,p(i, j)
must have objective value at least γ. This means that Pδ ≤ max

p,(i,j)
Pδ,p(i, j).

B Proof of recovery lemma under infinite norm and payoff infor-
mation

Proof. For simplicity of notation, we drop the indices p. We first remark that (G,G1, . . . , Gl) is feasible for
Program (4); as (Ĝ, Ĝ1, . . . , Ĝl) is optimal, it is necessarily the case that

max
k
‖Ĝ− Ĝk‖∞ ≤ max

k
‖G−Gk‖∞ ≤ δ.

Let us write ∆G = G − Ĝ. We know that for all k, ek ′Gk = ek ′Ĝk = vk, and thus ek ′(Gk − Ĝk) = 0.
We can write

E∆G = (e′1(G− Ĝ) . . . e′l(G− Ĝ))′

= (e′1(G−G1 +G1 − Ĝ1 + Ĝ1 − Ĝ)

. . . e′l(G−Gl +Gl − Ĝl + Ĝl − Ĝ))′

= (e′1(G−G1 + Ĝ1 − Ĝ) . . . e′l(G−Gl + Ĝl − Ĝ))′.

Let xk = G−Gk + Ĝk − Ĝ. We then have ‖E∆G‖∞ ≤ max
k
‖xk‖∞ as ek has only elements between 0 and

1. Therefore, by the triangle inequality,
‖E∆G‖∞ ≤ 2δ.

It immediately follows that ‖∆G‖∞ ≤ 2‖E−1‖∞ · δ.

C Writing Cournot constraints efficiently

C.1 Casting the equilibrium constraints as linear constraints

When action profile (q1, . . . , qn) is chosen, player i gets utility ui(qi, q−i) = qiP (q1, . . . , qn) − ci(qi) where
q−i denotes the production levels of all players but i. A pure action profile q∗ = (q∗1 , . . . , q

∗
n) is a Nash

Equilibrium if and only if for all players i, q∗i maximizes ui(qi, q
∗
−i); as P is concave and ci is convex, ui is

convex in qi and the equilibrium condition is equivalent to the first order condition

qi
∂P

∂qi
(q1, . . . , qn) + P (q1, . . . , qn) = c′i(qi), ∀i (6)
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Then, combining Equations 6 and 5, the equilibrium constraints become

qi
∂P

∂qi
(q1, . . . , qn) + P (q1, . . . , qn) =

d∑
k=1

kai(k)qk−1i (7)

which are linear and tractable in the variables (ai(0), ai(1), . . . , ai(d))), as long as P (q1, . . . , qn), ∂P∂qi (q1, . . . , qn)
can be efficiently computed given observations q1, . . . , qn. Such equilibrium constraints can be incorporated
into our framework.

C.2 Casting the convexity constraints as SDP constraints

We need to be able to deal with“ci is convex polynomial of degree d” constraints for all i, in a computa-
tionally efficient manner. This constraint can be rewritten as “c′′i is a non-negative polynomial of degree d.”
Fortunately, this is a classic constraint in the realm of convex optimization, and can be dealt with in the
following ways:

• If d = 1, then ci(qi) = ai(1)qi + ai(0) (c′′i = 0) is always convex. In this case, no constraint need be
added.

• If d ≥ 2, then we need to ensure that c′′i is non-negative in all points. It is known that a univariate
polynomial is non-negative if and only if it can be written as a sum-of-squares; such constraints
can efficiently be transformed into tractable semidefinite constraints. (For more details on the SDP
formulation of sum-of-squares constraints, see [Par04].)
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